2015 年研究生入学考试数学一解答题第 1 题解析

题目

设函数 f(x)=x+a \ln(1+x)+bx\sin x,g(x)=kx^{3}x \rightarrow 0 时等价无穷小,求常数 a,b,k 的取值.

解析

由于 x \rightarrow 0 时,f(x)g(x) 是等价无穷小,因此有:

\lim_{x \rightarrow 0}\frac{f(x)}{g(x)}=1, 即:

\lim_{x \rightarrow 0}\frac{x+a \ln(1+x)+bx \sin x}{kx^{3}}=1.

又由麦克劳林公式:

1. \sin x=x+o(x^{2});

注 1:根据麦克劳林公式,\sin x 也可以等于 x-\frac{x^{3}}{6}+o(x^{4}), 但是这里为了能够在接下来的计算中使得分子分母可以使用“对照”的方式求解,分子的最大幂次不能大于分母的最大幂次。由于 \sin x 在使用麦克劳林公式替换之后还需要和 x 相乘得到二次幂,因此这里只能令 \sin x 等于 x+o(x^{2}).

2. \ln(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+o(x^{3}).

注 2. 对 \ln(1+x) 项数的选取所依据的原因和注 1 一致。

于是,我们有:

1=\lim_{x \rightarrow 0}\frac{x+ax-\frac{a}{2}x^{2}+\frac{a}{3}x^{3}+o(x^{3})+bx^{2}+o(x^{3})}{kx^{3}}=\lim_{x \rightarrow 0}\frac{(1+a)x+(b-\frac{a}{2})x^{2}+\frac{a}{3}x^{3}+o(x^{3})}{kx^{3}}.

于是,我们有:

\left\{\begin{matrix} 1+a=0\\ b-\frac{a}{2}=0,\\ \frac{a}{3}=k \end{matrix}\right.

解得:

\left\{\begin{matrix} a=-1\\ b=-\frac{1}{2}\\ k=-\frac{1}{3} \end{matrix}\right.

手写作答

图 1

EOF

阿波罗计划 50 周年:NASA 在月球上使用的第一辆月球车

Figure 1. from: https://www.nasa.gov/centers/marshall/history/this-week-in-nasa-history-first-use-of-the-lunar-roving-vehicle-july-31.html

如果从 1969 年 NASA 的航天器成功登陆月球开始算起,今年是阿波罗计划 50 周年。

在 1971 年的 07 月 31 日,阿波罗 15 号任务首次在月球使用了月球漫游车。这是一台轻量级的车,使用电力驱动,可以在月球表面的低重力真空环境中行驶,帮助宇航员探索着陆点周围的环境。

本文中的这张照片是在阿波罗 15 号任务中宇航员第三次出舱活动时拍摄的,照片的背景是荒凉的月球和无穷无尽的深空。然而,当人类的脚步开始点缀在这颗星球上时,她的美便开始难以用语言形容。

更多信息可以访问:

https://www.nasa.gov/centers/marshall/history/index.html

2017 年研究生入学考试数学一填空题第 2 题解析

题目

微分方程 y''+2y'+3y=0 得通解为__.

解析

观察可知,这是一个二阶常系数线性齐次微分方程。

二阶常系数线性齐次微分方程的性质如下:

形如 y''+py'+qy=0, 其中 p,q 均为常数。

特征方程为:\lambda^{2}+p \lambda+q=0,

(1) 当 \lambda_{1},\lambda_{2} 为互异实根时,微分方程得通解为 y(x)=C_{1}e^{\lambda_{1}x}+C_{2}e^{\lambda_{2}x};

(2) 当 \lambda_{1}=\lambda_{2} 时,通解为 y(x)=(C_{1}+C_{2}x)e^{\lambda_{1}x};

(3) 当 \lambda=\alpha \pm i \beta (复数根)时,通解为 y(x)=e^{\alpha x}(C_{1}\cos \beta x+C_{2}\sin \beta x).

在本题中,特征方程中的 p=2,q=3, 因此特征方程为:

\lambda^{2}+2\lambda+3=0. (1)

此外,我们还知道,对于形如 ax^{2}+bx+c=0 的一元二次方程,其求根公式为:

x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}.

于是,我们知道,对于 (1) 式:

\lambda=\frac{-2\pm\sqrt{4-12}}{2}=\frac{-2\pm\sqrt{-8}}{2}. (2)
我们又知道,在虚数中(复数包含虚数和实数),虚数单位 i 有如下性质:

i^{2}=-1.

于是,(2) 式可以写成:

\lambda=\frac{-2\pm\sqrt{8i^{2}}}{2}=\frac{-2\pm i 2 \sqrt{2}}{2}=-1\pm i\sqrt{2}.

于是,\alpha=-1,\beta=\sqrt{2}.

因此,正确答案是:

y=e^{-x}(C_{1}\cos \sqrt{2}x+C_{2}\sin\sqrt{2}x)

EOF

2009 年研究生入学考试数学一选择题第 4 题解析 (两种解法)

题目

设有两个数列 \{a_{n}\}, \{b_{n}\}, 若 \lim_{n \rightarrow \infty}a_{n}=0, 则()

( A ) 当 \sum_{n=1}^{\infty}b_{n} 收敛时,\sum_{n=1}^{\infty}a_{n}b_{n} 收敛.

( B ) 当 \sum_{n=1}^{\infty}b_{n} 发散时,\sum_{n=1}^{\infty}a_{n}b_{n} 发散.

( C ) 当 \sum_{n=1}^{\infty}|b_{n}| 收敛时,\sum_{n=1}^{\infty}a_{n}^{2}b_{n}^{2} 收敛.

( D ) 当 \sum_{n=1}^{\infty}|b_{n}| 发散时,\sum_{n=1}^{\infty}a_{n}^{2}b_{n}^{2} 发散.

解析

由题目信息可知,当 n \rightarrow \infty 时,数列 \{a_{n}\} 是收敛的。

方法一:反例法

A 项:

a_{n}=b_{n}=(-1)^{n-1}\frac{1}{\sqrt{n}}.

则此时 \{a_{n}\} 是一个收敛数列,\sum_{n=1}^{\infty}b_{n} 也收敛(根据交错级数的莱布尼茨准则判别法可得此结论),但 \sum_{n=1}^{\infty}a_{n}b_{n}=\sum_{n=1}^{\infty}\frac{1}{n} 发散(由常见级数的敛散性可得此结论)。

由此构成了对 A 项的反例,A 项错误。

注 1. 交错级数 \sum_{n=1}^{\infty}(-1)^{n-1}u_{n}(u_{n}>0) 的判别法(莱布尼茨准则):

若交错级数 \sum_{n=1}^{\infty}(-1)^{n-1}u_{n}(u_{n}>0) 满足如下条件:

u_{n} \geqslant u_{n+1},(n = 1,2,3, \dotsc);

\lim u_{n} = 0,

则交错级数收敛,其和 S \leqslant u_{1}, 余项 |R_{n}| \leqslant u_{n+1}.

注 2. 常见级数的敛散性:

p 级数 \sum_{n=1}^{\infty}\frac{1}{n^{p}}\left\{\begin{matrix} 收敛 & p>1,\\ 发散 & p \leqslant 1. \end{matrix}\right.

B 项:

a_{n}=b_{n}=\frac{1}{n}, 则

\sum_{n=1}^{\infty}a_{n}b_{n}=\sum_{n=1}^{\infty}\frac{1}{n^{2}}.

此时,数列 \{a_{n}\} 是一个收敛数列,\sum_{n=1}^{\infty}b_{n} 是发散的,但是 \sum_{n=1}^{\infty}\frac{1}{n^{2}} 是收敛的。

由此构成了对 B 项的反例,B 项错误。

D 项:

和 B 项一样,令 a_{n}=b_{n}=\frac{1}{n}, 则 \sum_{n=1}^{\infty}a_{n}^{2}b_{n}^{2}=\sum_{n=1}^{\infty}\frac{1}{n^{4}} 是收敛的。

由此构成了对 D 项的反例,D 项错误。

综上可知,排除了 A,B,D 三个选项后,正确选项一定是 C 项。

方法二:用级数收敛的必要条件推导证明

我们可以使用级数收敛的必要条件直接证明 C 项正确。

级数 \sum_{n=1}^{\infty}u_{n} 收敛的必要条件:\lim_{n \rightarrow \infty} u_{n}=0.

由于 \lim_{n \rightarrow \infty} u_{n}=0 是级数 \sum_{n=1}^{\infty}u_{n} 收敛的必要条件,因此,根据“小充分大必要”的原则,我们知道:

\sum_{n=1}^{\infty}u_{n} 收敛 \Rightarrow \lim_{n \rightarrow \infty} u_{n}=0;

\lim_{n \rightarrow \infty} u_{n}=0 \nRightarrow \sum_{n=1}^{\infty}u_{n} 收敛。

由于 \lim_{n \rightarrow \infty} a_{n}=0, 从而存在 M>0, 有 |a_{n}| \leqslant M, 即:

a_{n}^{2}b_{n}^{2} \leqslant M^{2}b_{n}^{2}.
又因为 \sum_{n=1}^{\infty}|b_{n}| 收敛,故有:

\lim_{n \rightarrow \infty}|b_{n}|=0.

又根据如下定理:

c 为非零常数,则 \sum_{n=1}^{\infty}u_{n}\sum_{n=1}^{\infty}cu_{n} 具有相同的敛散性。

因此,\sum_{n=1}^{\infty}M^{2}|b_{n}| 收敛,即:

\lim_{n=1}^{\infty}M^{2}|b_{n}|=0.

于是:

\lim_{n \rightarrow \infty}\frac{M^{2}|b_{n}||b_{n}|}{|b_{n}|}=\lim_{n \rightarrow \infty}M^{2}|b_{n}|=\lim_{n \rightarrow \infty}\frac{M^{2}b_{n}^{2}}{|b_{n}|}=0.

接下来,根据“比较判别法的极限形式”:

\sum_{n=1}^{\infty}u_{n}\sum_{n=1}^{\infty}v_{n} 均为正项级数,且 \lim_{n \rightarrow \infty}\frac{u_{n}}{v_{n}}=A(v_{n} \neq 0).

① 若 0 \leqslant A \leqslant +\infty, 且 \sum_{n=1}^{\infty}v_{n} 收敛,则 \sum_{n=1}^{\infty}u_{n} 收敛.

② 若 0 \leqslant A \leqslant +\infty, 且 \sum_{n=1}^{\infty}v_{n} 发散,则 \sum_{n=1}^{\infty}u_{n} 发散.

于是我们知道,\sum_{n=1}^{\infty}{M^{2}b_{n}^{2}} 收敛。

又因为 a^{2}b^{2} \leqslant M^{2}b^{2}, 所以:

\sum_{n=1}^{\infty}{a^{2}b_{n}^{2}} 收敛.

由此得证 C 项正确。

EOF

2018 年研究生入学考试数学一选择题第 4 题解析

题目

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{(1+x)^{2}}{1+x^{2}}dx,N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{1+x}{e^{x}},K=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1+\sqrt{\cos x})dx,则 ( )

( A ) M>N>K

( B ) M>K>N

( C ) K>M>N

( D ) K>N>M

解析

在解答题目时,能化简的要先化简,能计算出具体数值的要先计算出具体数值。
首先观察本题,发现 M 对应的式子应该是可以化简或者通过积分计算出具体的数值。于是:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{(1+x)^{2}}{1+x^{2}}dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{1+x^{2}+2x}{1+x^{2}}dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[\frac{1+x^{2}}{1+x^{2}}+\frac{2x}{1+x^{2}}]dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[1+\frac{2x}{1+x^{2}}]dx

计算到上面这一步之后,我们有两种方法可以继续上面的计算,一种方法是利用积分函数在对称区间上的性质,另一种是利用基本积分公式直接计算。

下面分别使用上述提到的两种方法展开计算。

方法一:利用积分函数在对称区间上的性质

这里说的“对称区间”指的是关于原点对称的区间,观察题目可知,题目中的积分函数的上限和下限组成的区间 [-\frac{\pi}{2},\frac{\pi}{2}] 正好是关于原点对称的。

根据积分的几何意义,我们知道,奇函数在关于原点对称的对称区间上的积分是等于 0 的。

y=x,x \in (-\infty,+\infty) 就是一个典型的奇函数,如图 1:

Figure 1. 奇函数图像,使用 www.desmos.com 制作

因此,接下来,我们如果能证明一个函数是奇函数,就可以证明这个函数在关于原点对称的区间上的积分是 0.

于是,令:

f(x)=\frac{2x}{1+x^{2}}

则:

\frac{2(-x)}{1+(-x)^{2}} = -\frac{2x}{1+x^{2}} \Rightarrow f(-x) = -f(x).

因此 f(x)=\frac{2x}{1+x^{2}} 是一个奇函数,于是:

\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{2x}{1+x^{2}}dx=0.

即:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1 d x.

方法二:利用基本积分公式直接计算

由前面的计算,我们已知,M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{2x}{1+x^{2}}dx, 于是,根据积分公式:

d(x^{\mu})=\mu x^{\mu-1}dx.

我们可以令 2xdx=d(1+x^{2}).

于是:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1+\frac{d(1+x^{2})}{1+x^{2}}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1+\frac{1}{1+x^{2}}d(1+x^{2}).

接下来,根据基本积分公式:

\int \frac{1}{x}dx=\ln |x| + c.

我们有:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1+\frac{1}{1+x^{2}}d(1+x^{2})=x+\ln |1+x^{2}| + c |_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{\pi}{2}+|\ln[1+(\frac{\pi}{2})^{2}]|+c-(-\frac{\pi}{2})-|\ln[1+(-\frac{\pi}{2})^{2}]|-c=\frac{\pi}{2}+\frac{\pi}{2}=\pi.

又因为,M 的积分上限 \frac{\pi}{2} 减去 M 的积分下限 -\frac{\pi}{2} 也等于 \pi.

根据定积分的基本性质:

\int_{a}^{b}1dx=b-a.

我们知道:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1dx.

补充:

如果是计算 \int \frac{2x}{1-x^{2}}dx, 则我们至少有以下两种计算方法:

\int \frac{2x}{1-x^{2}}dx=-\int \frac{1}{1-x^{2}}=-\ln |1-x^{2}| +c;

或者:

\int \frac{2x}{1-x^{2}}dx=\int(\frac{1}{1-x}-\frac{1}{1+x})dx = -\ln|x-1|-\ln|x+1|+c=-\ln|x^{2}-1|+c.

至此,我们分别使用两种方法完成了对 M 的化简计算。

根据定积分的比较定理:

设 f(x) \leqslant g(x),x \in [a,b], 则 \int_{a}^{b}f(x)dx \leqslant \int_{a}^{b}g(x)dx.

观察题目可知,题目中给出的三个定积分 M,N,K 的上限和下限都是一样的,因此,我们可以使用上述比较定理比较他们的大小。

由于在 M,N,K 中,我们目前已知的只有 M 的数值,因此接下来我们先比较 NK 中的积分函数与 1 的大小关系。

首先来判断 N 的积分函数和 1 的大小关系。

x=0 时,1+x=e^{x}=1;

x<0 时,e^{x} 的减小速度小于 1+x 的减小速度;

x>0 时,e^{x} 的增长速度大于 1+x 的增长速度。

也就是说,在整个定义域内,y=e^{x} 的函数图像始终在 y=1+x 的上方或者和 y=1+x 重合,他们二者的图像如图 2:

Figure 2. 两个函数的对比图像,使用 www.desmos.com 制作

所以 \frac{1+x}{e^{x}} \leqslant 1,x \in [-\frac{\pi}{2},\frac{\pi}{2}].
再来判断 K 的积分函数和 1 的大小关系。

我们知道,当 x \in [-\frac{\pi}{2},\frac{\pi}{2}] 上时,y=\cos x \geqslant 0 的,如图 3:

Figure 3. 余弦函数的图像,使用 www.desmos.com 制作

于是 1+\sqrt{\cos x} \geqslant 1.

综上可知:

K \geqslant M \geqslant N, 正确选项是:C

EOF