容易想的思路不容易做,容易做的思路不容易想

一、题目题目 - 荒原之梦

二、解析 解析 - 荒原之梦

未定式分析

由于:

$$
\begin{aligned}
& \lim_{x \rightarrow 0} \frac{\arctan x}{x} = 1 \\ \\
& \lim_{x \rightarrow 0} \frac{1}{x^{2}} = \infty
\end{aligned}
$$

所以,式子 $I$ 是一个 $1^{\infty}$ 型的未定式.

思路容易想的解法:$\mathrm{e}$ 抬起

$$
\begin{aligned}
I & = \lim_{x \rightarrow 0} \left( \frac{\arctan x}{x} \right)^{\frac{1}{x^{2}}} \\ \\
& = \lim_{x \rightarrow 0} \mathrm{e}^{\ln \left( \frac{\arctan x}{x} \right)^{\frac{1}{x^{2}}}} \\ \\
& = \lim_{x \rightarrow 0} \mathrm{e}^{\textcolor{lightgreen}{ \frac{1}{x^{2}} \ln \left( \frac{\arctan x}{x} \right) }}
\end{aligned}
$$

其中,对于 $\textcolor{lightgreen}{ \frac{1}{x^{2}} \ln \left( \frac{\arctan x}{x} \right) }$, 有:

$$
\begin{aligned}
& \lim_{x \rightarrow 0} \textcolor{lightgreen}{ \frac{1}{x^{2}} \ln \left( \frac{\arctan x}{x} \right) } \\ \\
= \ & \lim_{x \rightarrow 0} \frac{1}{x^{2}} \left( \ln \arctan x – \ln x \right) \\ \\
= \ & \lim_{x \rightarrow 0} \frac{\ln \arctan x – \ln x}{x^{2}} \\ \\
\leadsto \ & \textcolor{gray}{洛必达运算} \\ \\
= \ & \lim_{x \rightarrow 0} \frac{1}{2x} \left[ \frac{1}{(1 + x^{2}) \arctan x} – \frac{1}{x} \right] \\ \\
= \ & \lim_{x \rightarrow 0} \frac{1}{2x} \left[ \frac{x-(1 + x^{2}) \arctan x}{x(1 + x^{2}) \arctan x} \right] \\ \\
= \ & \lim_{x \rightarrow 0} \frac{x – (1 + x^{2}) \arctan x}{2x^{2} (1 + x^{2}) \arctan x} \\ \\
= \ & \lim_{x \rightarrow 0} \frac{\textcolor{orangered}{x} \times \textcolor{orange}{ \left[ x – (1 + x^{2}) \arctan x \right] } }{\textcolor{orange}{ x^{3} } \times \textcolor{orangered}{ 2 (1 + x^{2}) \arctan x} } \\ \\
= \ & \lim_{x \rightarrow 0} \textcolor{orangered}{ \frac{x}{2(1 + x^{2}) \arctan x} } \times \lim_{x \rightarrow 0} \textcolor{orange}{ \frac{x – (1 + x^{2}) \arctan x}{x^{3}} } \\ \\
= \ & \lim_{x \rightarrow 0} \textcolor{orangered}{ \frac{x}{2(1 + x^{2}) x} } \times \lim_{x \rightarrow 0} \textcolor{orange}{ \frac{x – (1 + x^{2}) \arctan x}{x^{3}} } \\ \\
= \ & \lim_{x \rightarrow 0} \textcolor{orangered}{ \frac{1}{2(1 + x^{2}) } } \times \lim_{x \rightarrow 0} \textcolor{orange}{ \frac{x – (1 + x^{2}) \arctan x}{x^{3}} } \\ \\
= \ & \textcolor{orangered}{ \frac{1}{2} } \lim_{x \rightarrow 0} \textcolor{orange}{ \frac{x – (1 + x^{2}) \arctan x}{x^{3}} } \\ \\
\leadsto \ & \textcolor{gray}{洛必达运算} \\ \\
= \ & \frac{1}{2} \lim_{x \rightarrow 0} \frac{1 – 1 – 2x \arctan x}{3x^{2}} \\ \\
= \ & \frac{1}{2} \lim_{x \rightarrow 0} \frac{-2 \arctan x}{3x} \\ \\
= \ & \frac{1}{2} \cdot \frac{-2}{3} \\ \\
= \ & \textcolor{lightgreen}{ -\frac{1}{3} }
\end{aligned}
$$

综上可知:

$$
I = \mathrm{e}^{\textcolor{lightgreen}{\frac{-1}{3}}}
$$

思路不容易想的解法:凑等价无穷小

根据等价无穷小公式,当 $k \rightarrow 0$ 时,有 $\ln (1 + k) \sim k$.

又因为,当 $x \rightarrow 0$, 有:

$$
\left( \frac{\arctan x}{x} – 1 \right) \rightarrow 0
$$

于是:

$$
\begin{aligned}
& \ln \left( \frac{\arctan x}{x} \right) \\ \\
= \ & \ln \left[ 1 + \left( \frac{\arctan x}{x} – 1 \right) \right] \sim \left( \frac{\arctan x}{x} – 1 \right)
\end{aligned}
$$

又因为:

$$
\begin{aligned}
I & = \lim_{x \rightarrow 0} \left( \frac{\arctan x}{x} \right)^{\frac{1}{x^{2}}} \\ \\
& = \lim_{x \rightarrow 0} \mathrm{e}^{\ln \left( \frac{\arctan x}{x} \right)^{\frac{1}{x^{2}}}} \\ \\
& = \lim_{x \rightarrow 0} \mathrm{e}^{\textcolor{lightgreen}{ \frac{1}{x^{2}} \ln \left( \frac{\arctan x}{x} \right) }}
\end{aligned}
$$

所以:

$$
\begin{aligned}
& \lim_{x \rightarrow 0} \textcolor{lightgreen}{ \frac{1}{x^{2}} \ln \left( \frac{\arctan x}{x} \right) } \\ \\
= \ & \lim_{x \rightarrow 0} \frac{1}{x^{2}} \left( \frac{\arctan x}{x} – 1 \right) \\ \\
= \ & \lim_{x \rightarrow 0} \frac{1}{x^{2}} \left( \frac{\arctan x – x}{x} \right) \\ \\
= \ & \lim_{x \rightarrow 0} \frac{\arctan x – x}{x^{3}} \\ \\
\leadsto \ & \textcolor{gray}{洛必达运算} \\ \\
= \ & \lim_{x \rightarrow 0} \frac{\frac{1}{1 + x^{2}} – 1}{3x^{2}} \\ \\
= \ & \lim_{x \rightarrow 0} \frac{\frac{-x^{2}}{1 + x^{2}}}{3x^{2}} \\ \\
= \ & \lim_{x \rightarrow 0} \frac{-1}{3(1 + x^{2})} \\ \\
= \ & \textcolor{lightgreen}{ -\frac{1}{3} }
\end{aligned}
$$

综上可知:

$$
I = \mathrm{e}^{\textcolor{lightgreen}{\frac{-1}{3}}}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress