$n$ 阶方阵 $\boldsymbol{A}$ 不可逆的充要条件:$\boldsymbol{A x}$ $=$ $\mathbf{0}$(C010)

问题

已知,$\boldsymbol{A}$ 为 $n$ 阶方阵,则当 $\textcolor{orange}{\boldsymbol{A x}}$ $\textcolor{orange}{=}$ $\textcolor{orange}{\mathbf{0}}$ 满足如下哪个条件时,可以判断矩阵 $\boldsymbol{A}$ 不可逆

选项

[A].   $\boldsymbol{A x}$ $=$ $\mathbf{0}$ 只有零解

[B].   $\boldsymbol{A x}$ $=$ $\mathbf{0}$ 有零解

[C].   $\boldsymbol{A x}$ $=$ $\mathbf{0}$ 有非零解

[D].   $\boldsymbol{A x}$ $=$ $\mathbf{0}$ 无解


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$n$ 阶矩阵 $\boldsymbol{A}$ 不可逆 $\textcolor{tan}{\Leftrightarrow}$ $\boldsymbol{A x}$ $=$ $\mathbf{0}$ 有非零解