问题
根据伴随矩阵的性质,我们知道:$\left(\boldsymbol{A}^{*}\right)^{-1}$ $=$ $\left(\boldsymbol{A}^{-1}\right)^{*}$
那么,$\left(\boldsymbol{A}^{*}\right)^{-1}$ $=$ $\left(\boldsymbol{A}^{-1}\right)^{*}$ $=$ $?$
选项
[A]. $\left(\boldsymbol{A}^{*}\right)^{-1}$ $=$ $\left(\boldsymbol{A}^{-1}\right)^{*}$ $=$ $\frac{1}{|\boldsymbol{A}|^{2}} \boldsymbol{A}$[B]. $\left(\boldsymbol{A}^{*}\right)^{-1}$ $=$ $\left(\boldsymbol{A}^{-1}\right)^{*}$ $=$ $|\boldsymbol{A}| \boldsymbol{A}$
[C]. $\left(\boldsymbol{A}^{*}\right)^{-1}$ $=$ $\left(\boldsymbol{A}^{-1}\right)^{*}$ $=$ $\frac{1}{|\boldsymbol{A}|} \boldsymbol{A}$
[D]. $\left(\boldsymbol{A}^{*}\right)^{-1}$ $=$ $\left(\boldsymbol{A}^{-1}\right)^{*}$ $=$ $\frac{-1}{|\boldsymbol{A}|} \boldsymbol{A}$