一阶常系数非齐次线性差分方程的特解:$f(t)$ $=$ $d^{t}$ $\cdot$ $P_{m}(t)$ 且 $a$ $+$ $d$ $=$ $0$(B032)

问题

已知,有一阶常系数非齐次线性差分方程:
$y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f(t)$.

其中,非齐次项 $f(t)$ $=$ $f(t)$ $=$ $d^{t}$ $\cdot$ $P_{m}(t)$, 其中,$d$ 为非零常数,$P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$

且:$a$ $+$ $d$ $\neq$ $0$.

则,试取特解的形式 $y_{t}^{*}$ $=$ $?$

选项

[A].   $y_{t}^{*}$ $=$ $d^{t}$ $\cdot$ $Q_{m}(t)$

[B].   $y_{t}^{*}$ $=$ $t$ $\cdot$ $d^{t}$ $\cdot$ $Q_{m}(t)$

[C].   $y_{t}^{*}$ $=$ $t$ $\cdot$ $Q_{m}(t)$

[D].   $y_{t}^{*}$ $=$ $\frac{1}{t}$ $\cdot$ $d^{t}$ $\cdot$ $Q_{m}(t)$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$y_{t}^{*}$ $=$ $t$ $\cdot$ $d^{t}$ $\cdot$ $Q_{m}(t)$

其中,$Q_{m}(t)$ $=$ $B_{0}$ $+$ $B_{1}$ $t$ $+$ $\cdots$ $+$ $B_{m}$ $t^{m}$, 其中 $B_{0}$, $B_{1}$, $\cdots$, $B_{m}$ 为待定常数.


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress