问题
若向量 $\vec{a}$ $=$ $(x_{1}, y_{1}, z_{1})$, 向量 $\vec{b}$ $=$ $(x_{2}, y_{2}, z_{2})$, 则 $\vec{a}$ $+$ $\vec{b}$ $=$ $?$选项
[A]. $\vec{a}$ $+$ $\vec{b}$ $=$ $($ $\frac{x_{1}}{x_{2}}$, $\frac{y_{1}}{y_{2}}$, $\frac{z_{1}}{z_{2}}$ $)$[B]. $\vec{a}$ $+$ $\vec{b}$ $=$ $($ $x_{2} – x_{1}$, $y_{2} – y_{1}$, $z_{2} – z_{1}$ $)$
[C]. $\vec{a}$ $+$ $\vec{b}$ $=$ $($ $x_{1} – x_{2}$, $y_{1} – y_{2}$, $z_{1} – z_{2}$ $)$
[D]. $\vec{a}$ $+$ $\vec{b}$ $=$ $($ $x_{1} + x_{2}$, $y_{1} + y_{2}$, $z_{1} + z_{2}$ $)$
$\textcolor{red}{\vec{a}}$ $\textcolor{green}{+}$ $\textcolor{red}{\vec{b}}$ $=$ $($ $\textcolor{orange}{x}_{\textcolor{cyan}{1}} \textcolor{green}{+} \textcolor{orange}{x}_{\textcolor{cyan}{2}}$, $\textcolor{orange}{y}_{\textcolor{cyan}{1}} \textcolor{green}{+} \textcolor{orange}{y}_{\textcolor{cyan}{2}}$, $\textcolor{orange}{z}_{\textcolor{cyan}{1}} \textcolor{green}{+} \textcolor{orange}{z}_{\textcolor{cyan}{2}}$ $)$