问题
若点 $M_{1}$ 的坐标为 $(x_{1}, y_{1}, z_{1})$, 点 $M_{2}$ 的坐标为 $(x_{2}, y_{2}, z_{2})$, 则有向线段 $\overrightarrow{M_{1} M_{2}}$ 的坐标为多少?选项
[A]. $\overrightarrow{M_{1} M_{2}}$ $=$ $($ $x_{2} – x_{1}$, $y_{2} – y_{1}$, $z_{2} – z_{1}$ $)$[B]. $\overrightarrow{M_{1} M_{2}}$ $=$ $($ $\frac{x_{2}}{x_{1}}$, $\frac{y_{2}}{y_{1}}$, $\frac{z_{2}}{z_{1}}$ $)$
[C]. $\overrightarrow{M_{1} M_{2}}$ $=$ $($ $x_{2} \times x_{1}$, $y_{2} \times y_{1}$, $z_{2} \times z_{1}$ $)$
[D]. $\overrightarrow{M_{1} M_{2}}$ $=$ $($ $x_{2} + x_{1}$, $y_{2} + y_{1}$, $z_{2} + z_{1}$ $)$