问题
若函数 $f(x)$ 在 $(a, b]$ 上连续,$x$ $=$ $a$ 为其瑕点,且 $f(x)$ $\geqslant$ $0$, 则以下关于反常积分 $\textcolor{Orange}{\int_{a}^{b}}$ $\textcolor{Orange}{f(x)}$ $\textcolor{Orange}{\mathrm{d} x}$ 敛散性的结论中,正确的是哪个?选项
[A]. 若有 $0$ $>$ $p$ $>$ $1$, 使得 $\lim_{x \rightarrow a^{+}}$ $(x-a)^{p} f(x)$ $=$ $\lambda$(其中,$0$ $\geqslant$ $\lambda$ $>$ $+\infty$)成立,则 $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$ 发散[B]. 若有 $-1$ $<$ $p$ $<$ $1$, 使得 $\lim_{x \rightarrow a^{+}}$ $(x-a)^{p} f(x)$ $=$ $\lambda$(其中,$1$ $\leqslant$ $\lambda$ $<$ $+\infty$)成立,则 $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$ 收敛
[C]. 若有 $0$ $<$ $p$ $<$ $1$, 使得 $\lim_{x \rightarrow a^{+}}$ $(x+a)^{p} f(x)$ $=$ $\lambda$(其中,$0$ $\leqslant$ $\lambda$ $<$ $+\infty$)成立,则 $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$ 发散
[D]. 若有 $0$ $<$ $p$ $<$ $1$, 使得 $\lim_{x \rightarrow a^{+}}$ $(x-a)^{p} f(x)$ $=$ $\lambda$(其中,$0$ $\leqslant$ $\lambda$ $<$ $+\infty$)成立,则 $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$ 收敛
若有 $\textcolor{Yellow}{0}$ $\textcolor{Green}{<}$ $\textcolor{Yellow}{p}$ $\textcolor{Green}{<}$ $\textcolor{Yellow}{1}$, 使得 $\lim_{x \rightarrow \textcolor{Yellow}{a^{+}}}$ $\big[$ $\textcolor{Red}{(x-a)^{p}} \textcolor{Green}{\cdot} \textcolor{Red}{f(x)}$ $\big]$ $=$ $\textcolor{Orange}{\lambda}$(其中,$\textcolor{Yellow}{0}$ $\textcolor{Green}{\leqslant}$ $\textcolor{Yellow}{\lambda}$ $\textcolor{Green}{<}$ $\textcolor{Yellow}{+\infty}$)成立,则 $\int_{a}^{b}$ $\textcolor{Red}{f(x)}$ $\mathrm{d} x$ 收敛