罗尔定理(B004)

问题

设函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 内可导,且 $f(a)$ $=$ $f(b)$, 则根据【罗尔定理】可知,下列哪个选项是正确的?

选项

[A].   存在 $\xi$ $\in$ $[a,b]$, 使得 $f'(\xi)$ $=$ $1$.

[B].   存在 $\xi$ $\in$ $(a,b)$, 使得 $f'(\xi)$ $=$ $1$.

[C].   存在 $\xi$ $\in$ $[a,b]$, 使得 $f'(\xi)$ $=$ $0$.

[D].   存在 $\xi$ $\in$ $(a,b)$, 使得 $f'(\xi)$ $=$ $0$.


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

存在 $\xi$ $\in$ $(a,b)$, 使得 $f'(\xi)$ $=$ $0$.


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress