2011年考研数二第07题解析

题目

设 $A$ 为三阶矩阵,将 $A$ 的第 $2$ 列加到第 $1$ 列得矩阵 $B$, 再交换 $B$ 的第 $2$ 行与第 $3$ 行得单位矩阵. 记 $P_{1} = \begin{bmatrix}
1& 0& 0\\
1& 1& 0\\
0& 0& 1
\end{bmatrix}$, $P_{2} = \begin{bmatrix}
1& 0& 0\\
0& 0& 1\\
0& 1& 0
\end{bmatrix}$, 则 $A=()$.

$$
(A) P_{1}P_{2}
$$

$$
(B)P_{1}^{-1}P_{2}
$$

$$
(C)P_{2}P_{1}
$$

$$
(D )P_{2}P_{1}^{-1}
$$

解析

根据“左行右列”原则,由题可知:

$$
E = P_{2} A P_{1} \Rightarrow
$$

$$
P_{2}^{-1} E = AP_{1} \Rightarrow
$$

$$
P_{2}^{-1} E p_{1}^{-1} = A
$$

由于题目中并没有出现 $P_{2}^{-1}$, 因此,我们对 $P_{2}$ 做一个求逆运算,看一看有什么规律可循:

$$
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0\\
0 & 0 & 1 & 0 & 1 & 0\\
0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
\Rightarrow
$$

$$
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0\\
0 & 1 & 0 & 0 & 0 & 1\\
0 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}
$$

由上可知:

$$
P_{2}^{-1} = P_{2}.
$$

于是:

$$
A = P_{2}^{-1} E p_{1}^{-1} = P_{2}EP_{1}^{-1} = P_{2}P_{1}^{-1}.
$$

综上可知,正确选项为:$D.$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress