混合偏导数与次序无关的前提是:混合偏导数连续

题目

解析

首先,由题目可知:

$$
\begin{aligned}
\frac { \partial u } { \partial x } & = \left[ f ( x ) – e ^ { x } \right] \sin y \\ \\
\frac { \partial u } { \partial y } & = – f ( x ) \cos y
\end{aligned}
$$

于是:

$$
\begin{aligned}
\frac { \partial ^ { 2 } u } { \partial x \partial y } & = \left[ \textcolor{orangered}{ f ( x ) } – e ^ { x } \right] \cos y \\ \\
\frac { \partial ^ { 2 } u } { \partial y \partial ^ { x } } & = – \textcolor{orangered}{ f ^ { \prime } ( x ) } \cos y
\end{aligned}
$$

由于 $\frac { \partial ^ { 2 } u } { \partial x \partial y }$ 和 $\frac { \partial ^ { 2 } u } { \partial y \partial x }$ 分别由 $f(x)$ 和其一阶导 $f ^{\prime} (x)$ 以及连续的初等函数,通过四则运算组成,因此,二阶偏导数 $\frac { \partial ^ { 2 } u } { \partial x \partial y }$ 和 $\frac { \partial ^ { 2 } u } { \partial y \partial x }$ 的连续性,就取决于 $f(x)$ 和 $f ^{\prime} (x)$ 的连续性。

又由于 $f ^{\prime} (x)$ 连续,因此,$f ^{\prime} (x)$ 存在,也就是说 $f(x)$ 可导,根据“可导必连续”的定理可知,$f(x)$ 也连续。

综上,二元函数 $u(x, y)$ 的二阶偏导数 $\frac { \partial ^ { 2 } u } { \partial x \partial y }$ 和 $\frac { \partial ^ { 2 } u } { \partial y \partial x }$ 分别都是连续的,因此,下式也成立:

$$
\frac { \partial ^ { 2 } u } { \partial x \partial y } = \frac { \partial ^ { 2 } u } { \partial y \partial x }
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress