2024年考研数二第21题解析:证明绝对值式子小于XX,需要“两头围堵”

第 (1) 问 | 解法二

当 $x \in(0,1)$ 时,$f(x)$ 在 $x=0$ 处的二阶泰勒展开式为:

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}\left(\xi_{1}\right)}{2!} x^{2} \tag{1}
$$

其中,$\xi_{1} \in (0, x)$.

当 $x \in(0,1)$ 时,$f(x)$ 在 $x=1$ 处的二阶泰勒展开式为:

$$
f(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}\left(\xi_{2}\right)}{2!}(x-1)^{2} \tag{2}
$$

其中,$\xi_{2} \in (x, 1)$.

$(1)$ 式乘以 $\textcolor{springgreen}{(1-x)}$, 得 $(3)$ 式:

$$
\begin{aligned}
& f(x) \cdot \textcolor{springgreen}{(1-x)} = \\ \\
& f(0) \textcolor{springgreen}{(1-x)} + \textcolor{orangered}{f^{\prime}(0) x(1-x)} + \frac{f^{\prime \prime}\left(\xi_{1}\right)}{2!} x^{2} \textcolor{springgreen}{(1-x)}
\end{aligned}
$$

$(2)$ 式乘以 $\textcolor{blue}{x}$, 得 $(4)$ 式:

$$
\begin{aligned}
& f(x) \cdot\textcolor{blue}{x} = \\ \\
& f(1) \cdot \textcolor{blue}{x} + \textcolor{orangered}{f^{\prime}(1) x(x-1)} + \frac{f^{\prime \prime}\left(\xi_{2}\right)}{2!} (x-1)^{2} \cdot \textcolor{blue}{x}
\end{aligned}
$$

又由于 $f^{\prime}(0)$ $=$ $f^{\prime}(1)$,得:

$$
\textcolor{orangered}{f^{\prime}(0) x(1-x) + f^{\prime}(1) x(x-1) = 0 }
$$

于是,$(3)$ 式加上 $(4)$ 式,得:

$$
\begin{aligned}
& f(x) (1-x) + f(x) \cdot x \\ \\
& = f(x) \\ \\
& = f(0)(1-x)+f(1) x+\frac{f^{\prime \prime}\left(\xi_{1}\right)}{2} x^{2}(1-x)+\frac{f^{\prime \prime}\left(\xi_{2}\right)}{2} x(x-1)^{2}
\end{aligned}
$$

对上面得式子进行变形,可得:

$$
\begin{aligned}
& f(x)-f(0)(1-x)-f(1) x \\ \\
& = \frac{f^{\prime \prime}\left(\xi_{1}\right)}{2} x^{2}(1-x)+\frac{f^{\prime \prime}\left(\xi_{2}\right)}{2} x(x-1)^{2}
\end{aligned}
$$

对上式加绝对值,可得:

$$
\begin{aligned}
& |f(x)-f(0)(1-x)-f(1) x| \\ \\
& =\frac{\left|f^{\prime \prime}\left(\xi_{1}\right) x^{2}(1-x)+f^{\prime \prime}\left(\xi_{2}\right) x(x-1)^{2}\right|}{2} \\
& =\frac{x(1-x)}{2} \cdot\left|f^{\prime \prime}\left(\xi_{1}\right) x+f^{\prime \prime}\left(\xi_{2}\right)(1-x)\right|
\end{aligned}
$$

又由于 $\left|f^{\prime \prime}(x)\right| \leq 1$, 所以:

$$
\left|f^{\prime \prime}\left(\xi_{1}\right) x+f^{\prime \prime}\left(\xi_{2}\right)(1-x)\right| \leq x+(1-x)=1
$$

因此可证:

$$
|f(x)-f(0)(1-x)-f(1) x| \leq \frac{x(1-x)}{2}
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress