题目 07
$$
I=\int \frac{x^{3}+3}{x^{2}(1+x)} \mathrm{~ d} x = ?
$$
解析 07
对于此类有理函数积分,一般都需要先用待定系数法分解:
$$
\frac{x^{3}+3}{x^{2}(x+1)}=\frac{x^{3}+3}{x^{3}+x^{2}}=\frac{x^{3}+x^{2}-x^{2}+3}{x^{3}+x^{2}}=
$$
$$
1+\frac{3-x^{2}}{x^{3}+x^{2}}=1+\frac{3-x^{2}}{x^{2}\left(x+1\right)} \Rightarrow
$$
在待定系数法中,分子的次幂要保持比分母小 $1$ 次,并且,当分母为一次幂时,分子设为常数 $A$, 当分母为二次幂时,分子设为 $Ax + B$, 当分母为三次幂时,分子设为 $Ax^{2} + Bx + C$:
$$
\frac{3-x^{2}}{x^{2}(x+1)}=\frac{A x+B}{x^{2}}+\frac{C}{x+1}=
$$
$$
\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1} \Rightarrow
$$
$$
\frac{A x^{2}(x+1)+B x(x+1)+ C x^{3}}{x^{3}(x+1)}=\frac{3-x^{2}}{x^{2}(x+1)} \Rightarrow
$$
$$
\frac{A x(x+1)+B(x+1)+ C x^{2}}{x^{2}(x+1)}=\frac{3-x^{2}}{x^{2}(x+1)} \Rightarrow
$$
$$
A x(x+1)+B(x+1)+ C x^{2}=-x^{2}+3 \Rightarrow
$$
$$
A x^{2}+A x+B x+B+ C x^{2}=-x^{2}+3 \Rightarrow
$$
于是:
$$
\left\{\begin{array}{l}
{ A + C = – 1 } \\ { A + B = 0 } \\ { B = 3 }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
C=2 \\ A=-3 \\ B=3
\end{array}\right.\right.
$$
因此:
$$
I=\int 1 \mathrm{~ d} x+\int\left(\frac{-3}{x}+\frac{3}{x^{2}}+\frac{2}{x+1}\right) \mathrm{~ d} x \Rightarrow
$$
$$
I=x-3 \ln |x|-\frac{3}{x}+2 \ln |x+1|+ C
$$