题目 05
$$
I=\int e^{2 x} \arctan \sqrt{e^{x}-1} \mathrm{~ d} x = ?
$$
解析 05
$$
I=\int e^{2 x} \arctan \sqrt{e^{x}-1} \mathrm{~ d} x \Rightarrow
$$
$$
I=\frac{1}{2} \int \arctan \sqrt{e^{x}-1} \mathrm{~ d} \left(e^{2 x}\right) \Rightarrow
$$
$$
I=\frac{1}{2} e^{2 x} \arctan \sqrt{e^{x}-1}-\frac{1}{2} \int e^{2 x} \mathrm{~ d} \left(\arctan \sqrt{x^{x}-1}\right)
$$
又:
$$
\left(\arctan \sqrt{e^{x}-1}\right)^{\prime}=\frac{1}{1+e^{x}-1} \cdot \frac{1}{2} \frac{e^{x}}{\sqrt{e^{x}-1}} \Rightarrow
$$
$$
\left(\arctan \sqrt{e^{x}-1}\right)^{\prime} = \frac{1}{2\sqrt{e^{x}-1}}
$$
于是:
$$
I=\frac{1}{2} e^{2 x} \cdot \arctan \sqrt{e^{x}-1}-\frac{1}{4} \int \frac{e^{2 x}}{\sqrt{e^{x}-1}} \mathrm{~ d} x \Rightarrow
$$
$$
\int \frac{e^{2 x}}{\sqrt{e^{x}-1}} \mathrm{~ d} x=\int \frac{e^{x}}{\sqrt{e^{x}-1}} \mathrm{~ d} \left(e^{x}\right) \Rightarrow
$$
令:
$$
t=e^{x} \Rightarrow
$$
$$
\textcolor{springgreen}{
\int \frac{t}{\sqrt{t-1}} \mathrm{~ d} t }\Rightarrow
$$
$$
\int \frac{t-1+1}{\sqrt{t-1}} \mathrm{~ d} t \Rightarrow \int \frac{t-1}{\sqrt{t-1}} \mathrm{~ d} t+\int \frac{1}{\sqrt{t-1}} \mathrm{~ d} t=
$$
$$
\int \sqrt{t-1} \mathrm{~ d} t+\int \frac{1}{\sqrt{t-1}} \mathrm{~ d} t \Rightarrow
$$
$$
\frac{2}{3}(t-1)^{\frac{3}{2}}+2(t-1)^{\frac{1}{2}}+ C_{1} \Rightarrow
$$
$$
I=\frac{1}{2} e^{2 x} \cdot \arctan \sqrt{e^{x}-1}-\frac{1}{4} \Bigg[\frac{2}{3}(t-1) \cdot \sqrt{t-1}+
$$
$$
2\sqrt{t-1}+ C_{1} \Bigg] \Rightarrow
$$
$$
I=\frac{1}{2} e^{2 x} \cdot \arctan \sqrt{e^{x}-1}-\left[\frac{1}{6}(t-1) \sqrt{t-1}+\right.
$$
$$
\left.\frac{1}{2} \sqrt{t-1}+ C_{1}\right] \Rightarrow
$$
$$
I=\frac{1}{2} e^{2 x} \cdot \arctan \sqrt{e^{x}-1}-\left[\left(\frac{1}{6} t+\frac{2}{6}\right) \sqrt{t-1}+ C_{1}\right]
$$
$$
I=\frac{1}{2} e^{2 x} \cdot \arctan \sqrt{e^{x}-1}-\frac{1}{6}\left(e^{x}+2\right) \sqrt{e^{x}-1}+ C
$$
计算 $\int \frac{t}{\sqrt{t-1}} \mathrm{~ d} t$ 的第二种方法(整体代换去根号):
$$
\textcolor{springgreen}{ \int \frac{t}{\sqrt{t-1}} \mathrm{~ d} t } \Rightarrow
$$
令:
$$
k=\sqrt{t-1} \Rightarrow
$$
$$
k^{2}=t-1 \Rightarrow t=k^{2}+1
$$
则:
$$
\int \frac{t}{\sqrt{t-1}} \mathrm{~ d} t=\int \frac{k^{2}+1}{k} \mathrm{~ d} \left(k^{2}+1\right) \Rightarrow
$$
$$
\int \frac{k^{2}+1}{k} \cdot 2 k \mathrm{~ d} k \Rightarrow 2 \int\left(k^{2}+1\right) \mathrm{~ d} k=
$$
$$
2\left[\frac{1}{3} k^{3}+k\right]=\frac{2}{3} k^{3}+2 k
$$
即:
$$
\int \frac{t}{\sqrt{t-1}} \mathrm{~ d} t=\frac{2}{3}(t-1) \sqrt{t-1}+2 \sqrt{t-1}+ C
$$
$$
=\frac{2}{3}(t+2) \cdot \sqrt{t-1}
$$
计算 $\int \frac{t}{\sqrt{t-1}} \mathrm{~ d} t$ 的第三种方法(凑分部积分):
$$
\textcolor{springgreen}{ \int \frac{t}{\sqrt{t-1}} \mathrm{~ d} t } \Rightarrow
$$
又:
$$
\left[(t-1)^{\frac{1}{2}}\right]^{\prime}=\frac{1}{2}(t-1)^{\frac{-1}{2}} \Rightarrow
$$
于是:
$$
\int \frac{t}{\sqrt{t-1}} \mathrm{~ d} t=2 \int t \mathrm{~ d} (\sqrt{t-1})=
$$
$$
2\left[t \sqrt{t-1}-\int \sqrt{t-1} \mathrm{~ d} t\right]=
$$
$$
2 t \sqrt{t-1}-2 \times \frac{2}{3}(t-1)^{\frac{3}{2}}+ C=
$$
$$
2 t \sqrt{t-1}-2 \times \frac{2}{3}(t-1) \sqrt{t-1}+ C=
$$
$$
\left(2 t-\frac{4}{3} t+\frac{4}{3}\right) \sqrt{t-1}+ C=\frac{2}{3}(t+2) \sqrt{t-1}+ C
$$