典型例题汇总:不定积分(凑微分、分部积分、一般有理式积分,三角函数有理式积分等)

题目 03

$$
I=\frac{1}{\sin x \cos 2 x} \mathrm{~ d} x=?
$$

解析 03

Tips:

一般情况下,遇到二倍角的三角函数,首先尝试转换为一倍角的三角函数:

$\sin 2 x = 2 \sin x \cos x$

$\cos 2x = 2 \cos^{2} x – 1 = 1 – 2 \sin^{2} x$

$2\cos 2x = 2 \cos^{2} x – 1 + 1 – 2 \sin^{2} x$ $\Rightarrow$ $\cos 2x = \cos ^{2} x – \sin ^{2} x$

先尝试都转换为 $\sin x$

$$
I=\int \frac{\mathrm{~ d} (\sin x)}{\sin x \cdot \cos x\left(1-2 \sin ^{2} x\right)}
$$

但由于很难都凑成 $\sin x$, 因此,上面的步骤几乎走不通。

于是,尝试都转换为 $\cos x$:

$$
I=\int \frac{-\mathrm{~ d} (\cos x)}{\sin ^{2} x\left(2 \cos ^{2} x-1\right)}=\int \frac{-\mathrm{~ d} (\cos x)}{\left(1-\cos ^{2} x\right)\left(2 \cos ^{2} x-1\right)}
$$

令:

$$
u=\cos x
$$

则:

$$
I=\int \frac{-\mathrm{~ d} u}{\left(1-u^{2}\right)\left(2 u^{2}-1\right)} \Rightarrow
$$

设:

$$
\frac{A u+B}{1-u^{2}}+\frac{C u+D}{2 u^{2}-1}
$$

则有:

$$
\frac{(A u+B)\left(2 u^{2}-1\right)+(C u+D)\left(1-u^{2}\right)}{\left(1-u^{2}\right)\left(2 u^{2}-1\right)} \Rightarrow
$$

$$
2 A u^{3}-A u+2 B u^{2}-B+ C u-C u^{3}+D-D u^{2}=1 \Rightarrow
$$

$$
\left\{\begin{array} { l }
{ 2 A – C = 0 } \\ { – A + C = 0 } \\ { 2 B – D = 0 } \\ { – B + D = 1 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l} A=0 \\ C=0 \\ B=1 \\ D=2
\end{array} \right.\right.
$$

于是:

$$
I=-\int \left(\frac{1}{1-u^{2}}+\frac{2}{2 u^{2}-1}\right) \mathrm{~ d} u \Rightarrow
$$

$$
I=+\int \frac{1}{u^{2}-1} \mathrm{~ d} u-2 \int \frac{1}{2 u^{2}-1} \mathrm{~ d} u \Rightarrow
$$

$$
I=\int \frac{1}{(u+1) (u-1)} \mathrm{~ d} u-2 \int \frac{1}{(\sqrt{2} u+1)(\sqrt{2} u-1)} \mathrm{~ d} u \Rightarrow
$$

又:

$$
\frac{1}{u-1}-\frac{1}{u+1}=\frac{u+1-u+1}{(u-1)(u+1)}=
$$

$$
\frac{2}{(u-1)(u+1)}
$$

$$
\frac{1}{\sqrt{2} u-1}-\frac{1}{\sqrt{2} u+1}=\frac{\sqrt{2} u+1-\sqrt{2} u+1}{(\sqrt{2} u-1)(\sqrt{2} u+1)}=
$$

$$
\frac{2}{(\sqrt{2} u-1)(\sqrt{2} u+1)}
$$

于是:

$$
I=
$$

$$
\frac{1}{2} \int\left(\frac{1}{u-1}-\frac{1}{u+1}\right) \mathrm{~ d} u-2 \times \frac{1}{2} \int\left(\frac{1}{\sqrt{2} u-1}-\frac{1}{\sqrt{2} u+1}\right) \mathrm{~ d} u \Rightarrow
$$

$$
I=\frac{1}{2} \ln \left|\frac{u-1}{u+1}\right|-\left[\int \frac{1}{\sqrt{2} u-1} \mathrm{~ d} u-\int \frac{1}{\sqrt{2} u+1} \mathrm{~ d} u\right]
$$

$$
I=
$$

$$
\frac{1}{2} \ln \left|\frac{u-1}{u+1}\right|+\left[\frac{1}{\sqrt{2}} \ln |\sqrt{2} u-1|-\right. \left.\frac{1}{\sqrt{2}} \ln |\sqrt{2} u+1|\right]+ C \Rightarrow
$$

$$
I=\frac{1}{2} \ln \left|\frac{u-1}{u+1}\right|-\frac{1}{\sqrt{2}} \ln \left|\frac{\sqrt{2} u-1}{\sqrt{2} u+1}\right|+ C \Rightarrow
$$

$$
I=\frac{1}{2} \ln \left|\frac{\cos x-1}{\cos x+1}\right|-\frac{1}{\sqrt{2}} \ln \left|\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}\right|+ C
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress