向量组的线性相关性与秩(C019)


Warning: Trying to access array offset on value of type null in /www/wwwroot/zhaokaifeng.com/wp-content/plugins/CoreEngine/zumfls.php on line 33

Warning: Trying to access array offset on value of type null in /www/wwwroot/zhaokaifeng.com/wp-content/plugins/CoreEngine/zumfls.php on line 34

Warning: Undefined variable $zkf_pre_str in /www/wwwroot/zhaokaifeng.com/wp-content/plugins/CoreEngine/zumfls.php on line 44

Warning: Undefined variable $zkf_nex_str in /www/wwwroot/zhaokaifeng.com/wp-content/plugins/CoreEngine/zumfls.php on line 44

问题

若 $\boldsymbol{\beta}_{1}$, $\boldsymbol{\beta}_{2}$, $\cdots$, $\boldsymbol{\beta}_{t}$ 可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{s}$, 线性表出,则 $\mathrm{r}\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{\mathrm{t}}\right)$ 与 $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{\mathrm{s}}\right)$ 之间具有怎样的关系?

选项

[A].   $\mathrm{r}\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{\mathrm{t}}\right)$ $=$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{\mathrm{s}}\right)$

[B].   $\mathrm{r}\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{\mathrm{t}}\right)$ $<$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{\mathrm{s}}\right)$

[C].   $\mathrm{r}\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{\mathrm{t}}\right)$ $\geqslant$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{\mathrm{s}}\right)$

[D].   $\mathrm{r}\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{\mathrm{t}}\right)$ $\leqslant$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{\mathrm{s}}\right)$


答 案

$\mathrm{r}\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{\mathrm{t}}\right)$ $\leqslant$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{\mathrm{s}}\right)$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress