线性相关与线性无关边缘处性质的推论(C019)


Warning: Trying to access array offset on value of type null in /www/wwwroot/zhaokaifeng.com/wp-content/plugins/CoreEngine/zumfls.php on line 33

Warning: Trying to access array offset on value of type null in /www/wwwroot/zhaokaifeng.com/wp-content/plugins/CoreEngine/zumfls.php on line 34

Warning: Undefined variable $zkf_pre_str in /www/wwwroot/zhaokaifeng.com/wp-content/plugins/CoreEngine/zumfls.php on line 44

Warning: Undefined variable $zkf_nex_str in /www/wwwroot/zhaokaifeng.com/wp-content/plugins/CoreEngine/zumfls.php on line 44

问题

已知,$n$ 个 $n$ 维向量 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ 线性无关,则以下关于则任一 $n$ 维向量 $\boldsymbol{\alpha}$ 与向量组 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 之间关系的说法中,正确的是哪个?

选项

[A].   任一 $n$ 维向量 $\boldsymbol{\alpha}$ 不一定可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示

[B].   任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均不可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示

[C].   任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示,但表示法不唯一

[D].   任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示,且表示法唯一


答 案

任一 $n$ 维向量 $\boldsymbol{\alpha}$ 均可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{n}$ $)$ 线性表示,且表示法唯一


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress