问题
已知,有向量 $\textcolor{orange}{\alpha}$ $\textcolor{orange}{=}$ $\textcolor{orange}{(a_{1}, a_{2}, a_{3})^{\top}}$, $\textcolor{cyan}{\beta}$ $\textcolor{cyan}{=}$ $\textcolor{cyan}{(b_{1}, b_{2}, b_{3})^{\top}}$, 则 $\textcolor{orange}{\alpha}$ $\textcolor{red}{+}$ $\textcolor{cyan}{\beta}$ $=$ $?$选项
[A]. $\alpha$ $+$ $\beta$ $=$ $(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3})^{\top}$[B]. $\alpha$ $+$ $\beta$ $=$ $(a_{1} + b_{1}, a_{2} + b_{2}, a_{3} + b_{3})$
[C]. $\alpha$ $+$ $\beta$ $=$ $(a_{1} + b_{1}, a_{2} + b_{2}, a_{3} + b_{3})^{\top}$
[D]. $\alpha$ $+$ $\beta$ $=$ $a_{1}$ $\times$ $b_{1}$ $+$ $a_{2}$ $\times$ $b_{2}$ $+$ $a_{3}$ $\times$ $b_{3}$
相加的向量必须 同 为 行向量或者列向量,之后将 对 应 位 置 的元素相加,即可得新向量:
$\textcolor{orange}{\alpha}$ $\textcolor{yellow}{+}$ $\textcolor{cyan}{\beta}$ $=$ $\textcolor{yellow}{(} \textcolor{orange}{a_{1}} \textcolor{yellow}{+} \textcolor{cyan}{b_{1}}, \textcolor{orange}{a_{2}} \textcolor{yellow}{+} \textcolor{cyan}{b_{2}}, \textcolor{orange}{a_{3}} \textcolor{yellow}{+} \textcolor{cyan}{b_{3}} \textcolor{yellow}{)}^{\textcolor{red}{\top}}$