二阶欧拉方程的计算

问题描述

已知,有二阶欧拉方程:

$$
x^{2} y^{\prime \prime} + a x y^{\prime} + b y = f(x)
$$

计算过程

首先,若 $x$ $>$ $0$, 则令:

$$
x = e^{t}
$$

即:

$$
t = \ln x
$$

于是:

$$
y^{\prime} =
$$

$$
\frac{\mathrm{d} y}{\mathrm{d} x} =
$$

$$
\frac{\mathrm{d} y}{\mathrm{d} t} \times \frac{\mathrm{d} t}{\mathrm{d} x} =
$$

$$
\frac{\mathrm{d} y}{\mathrm{d} t} \times \frac{1}{x}.
$$

进而:

$$
y^{\prime \prime} =
$$

$$
\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}} =
$$

$$
\bigg( \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{1}{x} \bigg)^{\prime}_{x} =
$$

$$
\frac{\mathrm{d} (\frac{\mathrm{d} y}{\mathrm{d} t})}{\mathrm{d} t} \cdot \frac{\mathrm{d} t}{\mathrm{d} x} \cdot \frac{1}{x} + \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \big(\frac{-1}{x^{2}} \big) =
$$

$$
\frac{\mathrm{d} (\frac{\mathrm{d} y}{\mathrm{d} t})}{\mathrm{d} t} \cdot \frac{1}{x} \cdot \frac{1}{x} + \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \big(\frac{-1}{x^{2}} \big) =
$$

$$
\frac{\mathrm{d ^{2}} y}{\mathrm{d} t^{2}} \cdot \frac{1}{x} \cdot \frac{1}{x} + \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \big(\frac{-1}{x^{2}} \big) \Rightarrow
$$

$$
\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}} =
\bigg(\frac{\mathrm{d ^{2}} y}{\mathrm{d} t^{2}} – \frac{\mathrm{d} y}{\mathrm{d} t}\bigg) \cdot \frac{1}{x^{2}}.
$$

综上:

$$
x^{2} y^{\prime \prime} + a x y^{\prime} + b y = f(x) \Rightarrow
$$

$$
e^{2t} \bigg(\frac{\mathrm{d ^{2}} y}{\mathrm{d} t^{2}} – \frac{\mathrm{d} y}{\mathrm{d} t}\bigg) \cdot \frac{1}{x^{2}} + a x \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{1}{x} + b y = f(x) \Rightarrow
$$

$$
e^{2t} \bigg(\frac{\mathrm{d ^{2}} y}{\mathrm{d} t^{2}} – \frac{\mathrm{d} y}{\mathrm{d} t}\bigg) \cdot \frac{1}{e^{2 t}} + a x \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{1}{x} + b y = f(x) \Rightarrow
$$

$$
\bigg(\frac{\mathrm{d ^{2}} y}{\mathrm{d} t^{2}} – \frac{\mathrm{d} y}{\mathrm{d} t}\bigg) \cdot + a \frac{\mathrm{d} y}{\mathrm{d} t} + b y = f(x) \Rightarrow
$$

于是,可得一个以 $t$ 为自变量,$y(t)$ 为末知函数的二阶线性常系数微分方程:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+(a-1) \frac{\mathrm{d} y}{\mathrm{~d} t}+b y=f(\mathrm{e}^{t}).
$$

接着,通过计算二阶线性常系数微分方程的方法计算出以 $t$ 为自变量的函数 $y(t)$ 后,用 $t$ $=$ $\ln x$ 进行反代,即可得出以 $x$ 为自变量的函数 $y(x)$.


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress