积分区域关于 $x$ 轴对称的二重积分的化简(B014)

问题

如果积分区域 $D$ 关于 $x$ 轴对称,且积分区域 $D_{1}$ 为积分区域 $D$ 上在 $y$ $\geq$ $0$ 的部分,则以下对二重积分 $\iint_{D}$ $f(x, y)$ $\mathrm{d} \sigma$ 的化简,正确的是哪个?

选项

[A].   $\iint_{D} f(x, y) \mathrm{d} \sigma$ $=$ $\left\{\begin{array}{ll} 1, & f(x,-y)=-f(x, y), \\ 2 \iint_{D_{1}} f(x, y) \mathrm{d} \sigma, & f(x,-y)=f(x, y) \end{array}\right.$

[B].   $\iint_{D} f(x, y) \mathrm{d} \sigma$ $=$ $\left\{\begin{array}{ll} 0, & f(x,-y)=-f(x, y), \\ 2 \iint_{\frac{D}{2}} f(x, y) \mathrm{d} \sigma, & f(x,-y)=f(x, y) \end{array}\right.$

[C].   $\iint_{D} f(x, y) \mathrm{d} \sigma$ $=$ $\left\{\begin{array}{ll} 0, & f(x,-y)=-f(x, y), \\ 2 \iint_{D_{1}} f(x, y) \mathrm{d} \sigma, & f(x,-y)=f(x, y) \end{array}\right.$

[D].   $\iint_{D} f(x, y) \mathrm{d} \sigma$ $=$ $\left\{\begin{array}{ll} 0, & f(x,-y)=-f(x, y), \\ \frac{1}{2} \iint_{D_{1}} f(x, y) \mathrm{d} \sigma, & f(x,-y)=f(x, y) \end{array}\right.$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\iint_{D} f(x, y) \mathrm{d} \sigma$ $=$ $\left\{\begin{array}{ll} 0, & f(x,-y)=-f(x, y), \\ 2 \iint_{D_{1}} f(x, y) \mathrm{d} \sigma, & f(x,-y)=f(x, y) \end{array}\right.$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress