二元函数的梯度(B013)

问题

若已知函数 $f(x, y)$ 在平面区域 $D$ 内具有一阶连续偏导数,则对于每一点 $\left(x_{0}, y_{0}\right) \in D$, 该函数在点 $\left(x_{0}, y_{0}\right)$ 处的梯度 $\operatorname{grad} f\left(x_{0}, y_{0}\right)$ $=$ $?$

选项

[A].   $\operatorname{grad} f\left(x_{0}, y_{0} \right)$ $=$ $f_{x}\left(x_{0}, y_{0}\right)$ $+$ $f_{y}\left(x_{0}, y_{0}\right)$

[B].   $\operatorname{grad} f\left(x_{0}, y_{0} \right)$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \boldsymbol{i}$ $+$ $f_{y}\left(x_{0}, y_{0}\right) \boldsymbol{j}$

[C].   $\operatorname{grad} f\left(x_{0}, y_{0} \right)$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \boldsymbol{i}$ $\times$ $f_{y}\left(x_{0}, y_{0}\right) \boldsymbol{j}$

[D].   $\operatorname{grad} f\left(x_{0}, y_{0} \right)$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \boldsymbol{i}$ $-$ $f_{y}\left(x_{0}, y_{0}\right) \boldsymbol{j}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\operatorname{grad} f\left(x_{0}, y_{0}\right)$ $=$ $f_{x}\left(x_{0}, y_{0}\right) \boldsymbol{i}$ $+$ $f_{y}\left(x_{0}, y_{0}\right) \boldsymbol{j}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress