空间直线方程的一般式/交面式(B009)

问题

若两个平面的法向量分别为 $\vec{n_{1}}$ $=$ $(A_{1}, B_{1}, C_{1})$, $\vec{n_{2}}$ $=$ $(A_{2}, B_{2}, C_{2})$, 此外还有常数 $D_{1}$ 和 $D_{2}$, 则这两个平面相交所形成的直线如何表示?

选项

[A].   $\left\{\begin{matrix} A_{1}x + B_{1}y + C_{1}z + D_{1} = 0,\\ A_{2}x + B_{2}y + C_{2}z + D_{2} = 0.\end{matrix}\right.$

[B].   $\left\{\begin{matrix} \frac{A_{1}}{x} + \frac{B_{1}}{y} + \frac{C_{1}}{z} + D_{1} = 0,\\ \frac{A_{2}}{x} + \frac{B_{2}}{y} + \frac{C_{2}}{z} + D_{2} = 0.\end{matrix}\right.$

[C].   $\left\{\begin{matrix} \frac{1}{A_{1}}x + \frac{1}{B_{1}}y + \frac{1}{C_{1}}z + \frac{1}{D_{1}} = 0,\\ \frac{1}{A_{2}}x + \frac{1}{B_{2}}y + \frac{1}{C_{2}}z + \frac{1}{D_{2}} = 0.\end{matrix}\right.$

[D].   $\left\{\begin{matrix} A_{1}x + B_{1}y + C_{1}z = 0,\\ A_{2}x + B_{2}y + C_{2}z = 0.\end{matrix}\right.$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left\{\begin{matrix} A_{\textcolor{red}{1}}\textcolor{yellow}{x} + B_{\textcolor{red}{1}}\textcolor{yellow}{y} + C_{\textcolor{red}{1}}\textcolor{yellow}{z} + D_{\textcolor{red}{1}} = 0,\\ A_{\textcolor{cyan}{2}}\textcolor{yellow}{x} + B_{\textcolor{cyan}{2}}\textcolor{yellow}{y} + C_{\textcolor{cyan}{2}}\textcolor{yellow}{z} + D_{\textcolor{cyan}{2}} = 0.\end{matrix}\right.$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress