印度宣布禁用59款中国公司开发的APP[附完整名单]

据印度政府新闻处网站 (pib.gov.in) 于当地时间 2020 年 06 月 29 日发布的消息,印度信息技术部根据印度《信息技术法案》第 69 A 条的有关规定以及印度当前所受威胁的紧急状态,决定在印度国内禁用由中国公司开发的,而且对印度的主权独立、军事国防、国家安全和社会秩序造成危害的 59 款移动应用。

继续阅读“印度宣布禁用59款中国公司开发的APP[附完整名单]”

2016年考研数二第04题解析

题目

编号:A2016204

设函数 $f(x)$ 在 $(- \infty, + \infty)$ 内连续,其导函数的图形如图1 所示,则 $?$

$$
A. 函数 f(x) 有 2 个极值点,曲线 y=f(x) 有 2 个拐点
$$

$$
B. 函数 f(x) 有 2 个极值点,曲线 y=f(x) 有 3 个拐点
$$

$$
C. 函数 f(x) 有 3 个极值点,曲线 y=f(x) 有 1 个拐点
$$

$$
D. 函数 f(x) 有 3 个极值点,曲线 y=f(x) 有 2 个拐点
$$

继续阅读“2016年考研数二第04题解析”

2016年考研数二第03题解析

题目

编号:A2016203

反常积分 $① \int_{- \infty}^{0} \frac{1}{x^{2}} e^{\frac{1}{x}} dx$, $② \int_{0}^{+ \infty} \frac{1}{x^{2}} e^{\frac{1}{x}} dx$ 的敛散性为 $?$

$$A. ① 收敛,② 收敛$$

$$B. ① 收敛,② 发散$$

$$C. ① 发散,② 收敛$$

$$D. ① 发散,② 发散$$

继续阅读“2016年考研数二第03题解析”

2016年考研数二第02题解析

题目

编号:A2016202

已知函数 $f(x)=\left\{\begin{matrix}2(x-1),x < 1,\\ \ln x, x \geqslant 1,\end{matrix}\right.$ 则 $f(x)$ 的一个原函数是 $?$

$$
A. F(x)=\left\{\begin{matrix}(x-1)^{2},x < 1,\\ x(\ln x – 1), x \geqslant 1,\end{matrix}\right.$$

$$B. F(x)=\left\{\begin{matrix}(x-1)^{2},x < 1,\\ x(\ln x + 1) – 1, x \geqslant 1,\end{matrix}\right.$$

$$C. F(x)=\left\{\begin{matrix}(x-1)^{2},x < 1,\\ x(\ln x + 1) + 1, x \geqslant 1,\end{matrix}\right.$$

$$D. F(x)=\left\{\begin{matrix}(x-1)^{2},x < 1,\\ x(\ln x – 1) + 1, x \geqslant 1,\end{matrix}\right.$$

继续阅读“2016年考研数二第02题解析”

2016年考研数二第01题解析

题目

编号:A2016201

设 $\alpha_{1} = x(\cos \sqrt{x}-1)$, $\alpha_{2} = \sqrt{x}\ln(1+\sqrt[3]{x})$, $\alpha_{3} = \sqrt[3]{x+1}-1$.

当 $x \rightarrow 0^{+}$ 时,以上 $3$ 个无穷小量按照从低阶到高阶的排序是 $?$

$$A. \alpha_{1}, \alpha_{2}, \alpha_{3}$$

$$B. \alpha_{2}, \alpha_{3}, \alpha_{1}$$

$$C. \alpha_{2}, \alpha_{1}, \alpha_{3}$$

$$D. \alpha_{3}, \alpha_{2}, \alpha_{1}$$

继续阅读“2016年考研数二第01题解析”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress