题目
设二次型 $f(x_{1}, x_{2}, x_{3}) = x_{1}^{2} – x_{2}^{2} + 2a x_{1}x_{3} + 4 x_{2}x_{3}$ 的负惯性指数是 $1$, 则 $a$ 的取值范围为 $?$
继续阅读“2014年考研数二第14题解析”设二次型 $f(x_{1}, x_{2}, x_{3}) = x_{1}^{2} – x_{2}^{2} + 2a x_{1}x_{3} + 4 x_{2}x_{3}$ 的负惯性指数是 $1$, 则 $a$ 的取值范围为 $?$
继续阅读“2014年考研数二第14题解析”设 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 是三维向量,则对任意常数 $k$, $l$, 向量 $\alpha_{1} + k \alpha_{3}$, $\alpha_{2}+l\alpha_{3}$ 线性无关是向量 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 线性无关的 $?$
$$
A. 必要非充分条件
$$
$$
B. 充分非必要条件
$$
$$
C. 充分必要条件
$$
$$
D. 既非充分又非必要条件
$$
行列式 $\begin{vmatrix}
0 & a & b & 0\\
a & 0 & 0 & b\\
0 & c & d & 0\\
c & 0 & 0 & d
\end{vmatrix} = ?$
$$
A. (ad-bc)^{2}
$$
$$
B. -(ad-bc)^{2}
$$
$$
C. a^{2}d^{2} – b^{2}c^{2}
$$
$$
D. b^{2}c^{2} – a^{2}d^{2}.
$$
设 $3$ 阶矩阵 $A$ 的特征值为 $2$, $-2$, $1$, $B=A^{2} – A + E$, 其中 $E$ 为 $3$ 阶单位矩阵,则行列式 $|B|=?$
继续阅读“2015年考研数二第14题解析”设二次型 $f(x_{1}, x_{2}, x_{3})$, 在正交变换 $X=PY$ 下的标准形为 $2y_{1}^{2} + y_{2}^{2} – y_{3}^{2}$. 其中 $P=(e_{1}, e_{2}, e_{3})$. 若 $Q=(e_{1}, -e_{3}, e_{2})$, 则 $f(x_{1}, x_{2}, x_{3})$ 在正交变换 $X=QY$ 下的标准形为 $?$
$$
A. 2y_{1}^{2} – y_{2}^{2} + y_{3}^{2}
$$
$$
B. 2y_{1}^{2} + y_{2}^{2} – y_{3}^{2}
$$
$$
C. 2y_{1}^{2} – y_{2}^{2} – y_{3}^{2}
$$
$$
D. 2y_{1}^{2} + y_{2}^{2} + y_{3}^{2}
$$
设矩阵 $A=\begin{bmatrix} 1& 1& 1\\ 1& 2& a\\ 1& 4& a^{2}\end{bmatrix}$, $b=\begin{bmatrix}1\\ d\\ d^{2}\end{bmatrix}$, 若集合 $\Omega = \{1,2\}$, 则线性方程组 $AX=b$ 有无穷多解的充分必要条件为 $?$
$$A. a \notin \Omega , d \notin \Omega$$
$$B. a \notin \Omega , d \in \Omega$$
$$C. a \in \Omega , d \notin \Omega$$
$$D. a \in \Omega , d \in \Omega$$
继续阅读“2015年考研数二第07题解析”编号:A2016214
设矩阵 $\begin{bmatrix} a& -1& -1\\ -1& a& -1\\ -1& -1& a\end{bmatrix}$ 与 $\begin{bmatrix} 1& 1& 0\\ 0& -1& 1\\ 1& 0& 1\end{bmatrix}$ 等价,则 $a = ?$
继续阅读“2016年考研数二第14题解析”编号:A2016208
设二次型 $f(x_{1}, x_{2}, x_{3})$ $=$ $a(x_{1}^{2} + x_{2}^{2} + x_{3}^{2})$ $+$ $2x_{1}x_{2}$ $+$ $2x_{1}x_{3}$ $+$ $2x_{2}x_{3}$ 的正、负惯性指数分别为 $1$, $2$, 则 $?$
$$A. a > 1$$
$$B. a < -2$$
$$C. -2 < a < 1$$
$$D. a=1 或 a = -2$$
继续阅读“2016年考研数二第08题解析”编号:A2016207
设 $A$, $B$ 为可逆矩阵,且 $A$ 与 $B$ 相似,则下列结论错误的是 $?$
$$
A. A^{\top} 与 B^{\top} 相似
$$
$$
B. A^{-1} 与 B^{-1} 相似
$$
$$
C. A + A^{\top} 与 B + B^{\top} 相似
$$
$$
D. A + A^{-1} 与 B + B^{-1} 相似
$$
设矩阵 $A=\begin{bmatrix}
4& 1& -2\\
1& 2& a\\
3& 1& -1
\end{bmatrix}$ 的一个特征向量为 $\begin{bmatrix}
1\\
1\\
2
\end{bmatrix}$, 则 $a=?$
已知矩阵 $A=\begin{bmatrix}
2& 0& 0\\
0& 2& 1\\
0& 0& 1
\end{bmatrix}$, $B=\begin{bmatrix}
2& 1& 0\\
0& 2& 0\\
0& 0& 1
\end{bmatrix}$, $C=\begin{bmatrix}
1& 0& 0\\
0& 2& 0\\
0& 0& 2
\end{bmatrix}$, 则 $?$
$$A. A 与 C 相似,B 与 C 相似$$
$$B. A 与 C 相似,B 与 C 不相似$$
$$C. A 与 C 不相似,B 与 C 相似$$
$$D. A 与 C 不相似,B 与 C 不相似$$
继续阅读“2017年考研数二第08题解析”判断 $i$ 重特征值对应的线性无关的特征向量的个数有具体的公式。例如,当 $\lambda_{a}$ 为 $i$ 重特征值时,则 $\lambda_{a} E – A$ 的秩,即 $r(\lambda_{a} E – A)$ 就是 $\lambda_{a}$ 对应的线性无关的特征向量的个数。
下面是我对 $r(\lambda_{a} E – A)$ 之所以能够表示 $\lambda_{a}$ 对应的线性无关的向量的个数的原理的理解。
下面的理解可能不够严谨,做出这样的理解只是为了方便记忆公式,仅供参考。
继续阅读“[线代]如何判断i重特征值对应的线性无关的特征向量的个数”