问题
下面关于一元二次方程【$ax^{2} +$ $bx +$ $c = 0$】的判别式,正确的是哪个?选项
[A]. $\Delta =$ $b^{2} + 4ac \Rightarrow$ $\begin{cases} > 0, 有两个不等的实根;\\ = 0, 有两个相等的实根;\\ < 0, 没有实根,有两个共轭的虚根.\end{cases}.$[B]. $\Delta =$ $b^{2} - 4ac \Rightarrow$ $\begin{cases} > 0, 有两个相等的实根;\\ = 0, 有两个不等的实根;\\ < 0, 没有实根,有两个共轭的虚根.\end{cases}.$
[C]. $\Delta =$ $b^{2} - 4ab \Rightarrow$ $\begin{cases} > 0, 有两个不等的实根;\\ = 0, 有两个相等的实根;\\ < 0, 没有实根,有两个共轭的虚根.\end{cases}.$
[D]. $\Delta =$ $b^{2} - 4ac \Rightarrow$ $\begin{cases} > 0, 有两个不等的实根;\\ = 0, 有两个相等的实根;\\ < 0, 没有实根,有两个共轭的虚根.\end{cases}.$