2011年考研数二第18题解析:导数、三角函数、对数、二阶微分方程

题目

设函数 $y(x)$ 具有二阶导数,且曲线 $l$:$y=y(x)$ 与直线 $y=x$ 相切于原点,记 $\alpha$ 为曲线 $l$ 在点 $(x,y)$ 处切线的倾角,若 $\frac{d \alpha}{dx} = \frac{dy}{dx}$, 求 $y(x)$ 的表达式。

解析

由于 $\alpha$ 为曲线 $l$ 在点 $(x,y)$ 处切线的倾角,所以,根据导数的几何结构可知:

$$
\tan \alpha = \frac{dy}{dx}.
$$

对上式两边求导,得:

$$
(\sec^{2} \alpha) \cdot (\frac{d \alpha}{dx}) = \frac{d^{2}y}{dx^{2}}
$$

又:

$$
(\tan x)^{‘} = \sec^{2} x = 1 + \tan^{2} x.
$$

于是:

$$
(1+ \tan^{2} \alpha) (\frac{d \alpha}{dx}) = \frac{d^{2}y}{dx^{2}}.
$$

又:

$$
\frac{d \alpha}{dx} = \frac{dy}{dx} = \tan \alpha.
$$

于是:

$$
\frac{d^{2}y}{dx^{2}} = \frac{dy}{dx}[1+(\frac{dy}{dx})^{2}].
$$

若令:

$$
p = \frac{dy}{dx}.
$$

则有:

$$
\frac{d^{2}y}{dx^{2}} = p(1+p^{2}). (1)
$$

注:
$\frac{d^{2}y}{dx^{2}} \neq (\frac{dy}{dx})(\frac{dy}{dx})$,
故 $\frac{d^{2}y}{dx^{2}} \neq p^{2}$.

又因为:

$$
\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}(\frac{dy}{dx}) \Rightarrow
$$

$$
\frac{dp}{dx} = \frac{dy}{dx} \cdot \frac{dp}{dy} = p \cdot \frac{dp}{dy}.
$$

于是,$(1)$ 式可转化为:

$$
p \cdot \frac{dp}{dy} = p(1+p^{2}).
$$

又因为函数 $y(x)$ 具有二阶导数,即:

$$
\frac{dy}{dx} \neq 0 \Rightarrow
$$

$$
p \neq 0.
$$

于是,有:

$$
\frac{dp}{dy} = 1 + p^{2} \Rightarrow
$$

$$
\frac{dp}{1+p^{2}} = dy \Rightarrow
$$

$$
\int \frac{dp}{1+p^{2}} = \int dy \Rightarrow
$$

$$
\arctan (p) = y + C_{1}.
$$

又由题知:

$$
y(0) = 0, y^{‘}(0) = \frac{dy}{dx} = p = 1.
$$

于是,当 $x = 0$ 时,有:

$$
\arctan(1) = 0 + C_{1} \Rightarrow
$$

$$
C_{1} = \frac{\pi}{4}.
$$

即:

$$
\arctan (p) = y + \frac{\pi}{4} \Rightarrow
$$

$$
\tan[\arctan(p)] = \tan (y + \frac{\pi}{4}) \Rightarrow
$$

$$
p = \tan (y + \frac{\pi}{4}) \Rightarrow
$$

$$
\frac{dy}{dx} = \tan (y + \frac{\pi}{4}) \Rightarrow
$$

$$
\frac{dy}{\tan (y + \frac{\pi}{4})} = dx \Rightarrow
$$

$$
\int \frac{dy}{\tan (y + \frac{\pi}{4})} = \int dx \Rightarrow
$$

注:

$[\ln \sin(y + \frac{\pi}{4})]^{‘} =$
$\frac{[\sin(y + \frac{\pi}{4})]^{‘}}{\sin(y + \frac{\pi}{4})} =$
$\frac{\cos(y + \frac{\pi}{4})}{\sin(y + \frac{\pi}{4})} =$
$\frac{1}{\tan (y + \frac{\pi}{4})}.$

$$
\ln \sin (y + \frac{\pi}{4}) = x + \ln C_{2} (2)
$$

注:
$(2)$ 式中的 $”\ln C_{2}”$ 表示这是一个未知常数,这里当然也可以单独用 $”C_{2}”$ 表示未知常数,不过,为了和全式保持一致,并在之后的运算中消去 $”\ln”$, 我们这里选择使用 $”\ln C_{2}”$ 表示未知常数。

又:

$$
\log_{e}^{e^{x}} = x \Rightarrow
$$

$$
x = \ln e^{x}.
$$

于是,由 $(2)$ 式,得:

$$
\ln \sin (y + \frac{\pi}{4}) = \ln e^{x} + \ln C_{2} \Rightarrow
$$

$$
\ln \sin (y + \frac{\pi}{4}) = \ln(C_{2} e^{x}) \Rightarrow
$$

注:
$\ln \sin (y + \frac{\pi}{4}) = \ln e^{x} + \ln C_{2} \nRightarrow$
$\sin (y + \frac{\pi}{4}) = e^{x} + C_{2}.$

$$
\sin (y + \frac{\pi}{4}) = C_{2}e^{x}.
$$

又:

$$
x = 0 时,y(0) = 0.
$$

于是:

$$
\sin (\frac{\pi}{4}) = C_{2} \cdot 1 \Rightarrow
$$

$$
C_{2} = \frac{\sqrt{2}}{2}.
$$

即:

$$
\sin (y + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}e^{x} \Rightarrow
$$

$$
\arcsin[\sin (y + \frac{\pi}{4})] = \arcsin(\frac{\sqrt{2}}{2}e^{x}) \Rightarrow
$$

$$
y + \frac{\pi}{4} = \arcsin(\frac{\sqrt{2}}{2}e^{x}) \Rightarrow
$$

$$
y = \arcsin(\frac{\sqrt{2}}{2}e^{x}) – \frac{\pi}{4}.
$$