直线与平面垂直时的性质(B009)

问题

若直线 $L$ 的表达式为 $\frac{x-x_{0}}{l}$ $=$ $\frac{y-y_{0}}{m}$ $=$ $\frac{z-z_{0}}{n}$, 平面 $\pi$ 的表达式为 $Ax$ $+$ $By$ $+$ $Cz$ $+$ $D$ $=$ $0$. 此外,直线 $L$ 的方向向量为 $\vec{s}$ $=$ $(l, m, n)$, 平面 $\pi$ 的法向量为 $\vec{N}$ $=$ $(A, B, C)$.

那么,若 $L$ $\perp$ $\pi$, 则可以引申出来哪些性质?

选项

[A].   $L$ $\perp$ $\pi$ $\Leftrightarrow$ $\vec{s}$ $//$ $\vec{N}$ $\Leftrightarrow$ $\frac{A}{l}$ $=$ $\frac{B}{m}$ $=$ $\frac{C}{n}$ $\Leftrightarrow$ $\vec{s}$ $\cdot$ $\vec{N}$ $=$ $0$

[B].   $L$ $\perp$ $\pi$ $\Leftrightarrow$ $\vec{s}$ $//$ $\vec{N}$ $\Leftrightarrow$ $\frac{A}{l}$ $=$ $\frac{B}{m}$ $=$ $\frac{C}{n}$ $\Leftrightarrow$ $\vec{s}$ $\times$ $\vec{N}$ $=$ $0$

[C].   $L$ $\perp$ $\pi$ $\Leftrightarrow$ $\vec{s}$ $//$ $\vec{N}$ $\Leftrightarrow$ $Al$ $+$ $Bm$ $+$ $Cn$ $=$ $0$ $\Leftrightarrow$ $\vec{s}$ $\times$ $\vec{N}$ $=$ $0$

[D].   $L$ $\perp$ $\pi$ $\Leftrightarrow$ $\vec{s}$ $\perp$ $\vec{N}$ $\Leftrightarrow$ $\frac{A}{l}$ $=$ $\frac{B}{m}$ $=$ $\frac{C}{n}$ $\Leftrightarrow$ $\vec{s}$ $\times$ $\vec{N}$ $=$ $0$



显示答案

$\textcolor{orange}{L}$ $\textcolor{cyan}{\perp}$ $\textcolor{red}{\pi}$ $\Leftrightarrow$ $\textcolor{orange}{\vec{s}}$ $\textcolor{cyan}{//}$ $\textcolor{red}{\vec{N}}$ $\Leftrightarrow$ $\frac{\textcolor{red}{A}}{\textcolor{orange}{l}}$ $\textcolor{cyan}{=}$ $\frac{\textcolor{red}{B}}{\textcolor{orange}{m}}$ $\textcolor{cyan}{=}$ $\frac{\textcolor{red}{C}}{\textcolor{orange}{n}}$ $\Leftrightarrow$ $\textcolor{orange}{\vec{s}}$ $\textcolor{cyan}{\times}$ $\textcolor{red}{\vec{N}}$ $=$ $0$