等比数列的前 $n$ 项和公式(A001)

问题

下面的【等比数列前 $n$ 项和】公式中,正确的是哪个?
设 $a_{1}$ 为首项,$a_{n}$ 为通项,$q$ 为公比,$S_{n}$ 为前 $n$ 项和.

选项

[A].   $S_{n} = \frac{a_{1} \cdot (1 + q^{n})}{1 + q}$

[B].   $S_{n} = \frac{a_{1} \cdot (1 – q^{n})}{1 + q}$

[C].   $S_{n} = \frac{a_{1} \cdot (1 + q^{n})}{1 – q}$

[D].   $S_{n} = \frac{a_{1} \cdot (1 – q^{n})}{1 – q}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$S_{n} = \frac{a_{1} \cdot (1 – q^{n})}{1 – q}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress