2020 年研究生入学考试数学一第 10 题解析

题目

设 $\left\{\begin{matrix} x = \sqrt{t^{2}+1} \\ y = \ln(t+\sqrt{t^{2}+1}) \end{matrix}\right.$, 则 $\frac{d^{2}y}{dx^{2}}|_{t=1}=$

解析

因为:

\begin{align}
\frac{dy}{dx} \\
& = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
\end{align}

又:

\begin{align}
\frac{dy}{dt} \\
& =\frac{(t+\sqrt{t^{2}+1})’}{t+\sqrt{t^{2}+1}} \\
& = \frac{1}{t+\sqrt{t^{2}+1}}(1+\frac{t}{\sqrt{t^{2}+1}})
\end{align}

\begin{align}
\frac{dx}{dt} \\
& = (\sqrt{t^{2}+1})’ \ =[(t^{2}+1)^{\frac{1}{2}}]’ \\
& = \frac{t}{\sqrt{t^{2}+1}}
\end{align}

于是:

\begin{align}
\frac{dy}{dx} \\
& =\frac{1}{t+\sqrt{t^{2}+1}} \times \frac{\sqrt{t^{2}+1}+t}{\sqrt{t^{2}+1}} \times \frac{\sqrt{t^{2}+1}}{t} \\
& = \frac{1}{t}
\end{align}

又:

\begin{align}
\frac{d^{2}y}{dx^{2}} \\
& = \frac{d(\frac{dy}{dx})}{dx} \\
& = \frac{\frac{d(\frac{dy}{dx})}{dt}}{\frac{dx}{dt}}
\end{align}

且:

\begin{align}
\frac{d(\frac{dy}{dx})}{dt} \\
& = (\frac{1}{t})’ \\
& = \frac{-1}{t^{2}}
\end{align}

于是:

\begin{align}
\frac{d^{2}y}{dx^{2}} \\
& = \frac{-1}{t^{2}} \times \frac{\sqrt{t^{2}+1}}{t} \\
& = \frac{-\sqrt{t^{2}+1}}{t^{3}}
\end{align}

又:

$$t=1$$

于是:

\begin{align}
\frac{d^{2}y}{dx^{2}} \\
& = \frac{-\sqrt{2}}{1} \\
& = -\sqrt{2}\end{align}

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress