一、题目
$f(u, v)$ 具有二阶连续偏导数, 且:
$g(x, y)$ $=$ $f(2 x+y, 3 x-y)$
$\frac{\partial^{2} g}{\partial x^{2}}$ $+$ $\frac{\partial^{2} g}{\partial x \partial y}$ $-$ $6 \frac{\partial^{2} g}{\partial y^{2}}$ $=$ $1$
(1) 求 $\frac{\partial^{2} f}{\partial u \partial v}$ 的值;
(2)若 $\frac{\partial f(u, 0)}{\partial u}$ $=$ $u \mathrm{e}^{-u}$, $f(0, v)$ $=$ $\frac{1}{50} v^{2}$ $-$ $1$, 求 $f(u, v)$.
难度评级:
二、解析
第 (1) 问
对于多元复合函数求偏导的问题,我们首先要明白两个关于形式表示上的问题:
[1]. 如果我们用 “$\textcolor{springgreen}{u}$” 表示函数 $f$ 的第一组参数 $\textcolor{springgreen}{2x + y}$, 用 “$\textcolor{orangered}{v}$” 表示函数 $f$ 的第二组参数 $\textcolor{orangered}{3x – y}$, 则题目让我们求解 $\frac{\partial^{2} f}{\partial \textcolor{springgreen}{u} \partial \textcolor{orangered}{v}}$, 其实就是求解 $f^{\prime \prime}_{\textcolor{springgreen}{1} \textcolor{orangered}{2}}$.
[2]. 在本题中,由 $g(x, y)$ $=$ $f(2 x+y, 3 x-y)$ 可知:
$$
\begin{aligned}
\frac{\partial g}{\partial x} & \text{ 就是 } \frac{\partial f}{\partial x} \\
\frac{\partial g}{\partial y} & \text{ 就是 } \frac{\partial f}{\partial y} \\
\frac{\partial^{2} g}{\partial x^{2}} & \text{ 就是 } \frac{\partial^{2} f}{\partial x^{2}} \\
\frac{\partial^{2} g}{\partial y^{2}} & \text{ 就是 } \frac{\partial^{2} f}{\partial y^{2}} \\
\frac{\partial^{2} g}{\partial x \partial y} & \text{ 就是 } \frac{\partial^{2} f}{\partial x \partial y}
\end{aligned}
$$
已知 $g(x, y)$ $=$ $f(2 x+y, 3 x-y)$, 则:
$$
\begin{aligned}
\frac{\partial g}{\partial x} & = 2 f_{1}^{\prime}+3 f_{2}^{\prime} \\ \\
\frac{\partial g}{\partial y} & = f_{1}^{\prime}-f_{2}^{\prime}
\end{aligned}
$$
进而:
$$
\begin{aligned}
\textcolor{springgreen}{\frac{\partial^{2} g}{\partial x^{2}}} & = 2\left(2 f_{11}{ }^{\prime \prime}+3 f_{12}{ }^{\prime \prime}\right)+3\left(2 f_{21}{ }^{\prime \prime} + 3 f_{22}{ }^{\prime \prime}\right) \\ \\
& = \textcolor{pink}{4 f_{11}{ }^{\prime \prime}+12 f_{12}{ }^{\prime \prime} + 9 f_{22}{ }^{\prime \prime}} \\ \\ \\
\textcolor{springgreen}{\frac{\partial^{2} g}{\partial x \partial y}} & = 2\left(f_{11}{ }^{\prime \prime}-f_{12}{ }^{\prime \prime}\right)+3\left(f_{21}{ }^{\prime \prime}-f_{22}{ }^{\prime \prime}\right) \\
& = \textcolor{blue}{2 f_{11}{ }^{\prime \prime} + f_{12}{ }^{\prime \prime} – 3 f_{22}{ }^{\prime \prime}} \\ \\ \\
\textcolor{springgreen}{\frac{\partial^{2} g}{\partial y^{2}}} & = f_{11}{ }^{\prime \prime}-f_{12}{ }^{\prime \prime}-\left(f_{21}{ }^{\prime \prime}-f_{22}{ }^{\prime \prime}\right) \\
& = \textcolor{red}{f_{11}{ }^{\prime \prime}-2 f_{12}{ }^{\prime \prime}+f_{22}{ }^{\prime \prime}}
\end{aligned}
$$
于是,由 $\frac{\partial^{2} g}{\partial x^{2}}$ $+$ $\frac{\partial^{2} g}{\partial x \partial y}$ $-$ $6 \frac{\partial^{2} g}{\partial y^{2}}$ $=$ $1$, 得:
$$
\begin{aligned}
& \textcolor{pink}{4 f_{11}{ }^{\prime \prime}+12 f_{12}{ }^{\prime \prime}+9 f_{22}{ }^{\prime \prime}} \\
& + \textcolor{blue}{2 f_{11}{ }^{\prime \prime}+ f_{12}{ }^{\prime \prime} – 3 f_{22}{ }^{\prime \prime}} \\
& – 6\left( \textcolor{red}{f_{11}{ }^{\prime \prime}-2 f_{12}{ }^{\prime \prime}+f_{22}{ }^{\prime \prime}}\right) = 1
\end{aligned}
$$
即:
$$
f_{12}^{\prime \prime}=\frac{1}{25} \Rightarrow \frac{\partial^{2} f}{\partial u \partial v}=\frac{1}{25}
$$
多元函数的混合偏导与次序无关:
$f^{\prime \prime}_{12}$ $=$ $f^{\prime \prime}_{21}$
第 (2) 问
由第 $(1)$ 问可知:
$$
\frac{\partial^{2} f}{\partial u \partial v}=\frac{1}{25}
$$
于是,积分得:
$$
\begin{aligned}
\int \frac{\partial^{2} f}{\partial u \partial v} \mathrm{~d} v \\ \\
& = \frac{\partial f}{\partial u} \\ \\
& = f_{u}^{\prime} \\ \\
& = \int \frac{1}{25} \mathrm{~d} v \\ \\
& = \frac{1}{25} v + C(u)
\end{aligned}
$$
即:
$$
\textcolor{springgreen}{
f_{u}^{\prime} (u, v) = \frac{1}{25} v + C(u)
} \tag{1}
$$
又由题知:
$$
\frac{\partial f(u, 0)}{\partial u} = f_{u}^{\prime}(u, 0) = u e^{-u}
$$
于是,将该题目已知条件代入上面的 $\textcolor{springgreen}{(1)}$ 式,可得:
$$
u e^{-u} = \frac{1}{25} \times 0 + C(u) \Rightarrow C(u) = u e^{-u}
$$
于是:
$$
f_{u}^{\prime}(u, v)=\frac{1}{25} v+u e^{-u}
$$
继续积分,得:
$$
\begin{aligned}
f(u, v) \\ \\
& = \int f_{u}^{\prime}(u, v) \mathrm{~d} u \\ \\
& = \int\left(\frac{1}{25} v+u e^{-u}\right) a \\ \\
& = \frac{1}{25} v \cdot u \textcolor{orangered}{+ \int u e^{-u} \mathrm{~d} u} \\ \\
& = \frac{1}{25} u v \textcolor{orangered}{- u e^{-u}-e^{-u}} + C(v)
\end{aligned}
$$
上面对 $\textcolor{orangered}{\int u e^{-u} \mathrm{~d} u}$ 的计算,可以参考《和 $e^{x}$ 有关的那些式子》这篇笔记中的第 $5$ 条做题经验总结进行。
即:
$$
\textcolor{springgreen}{
f(u, v) = \frac{1}{25} u v – u e^{-u}-e^{-u} + C(v)
} \tag{2}
$$
又由题知:
$$
f(0, v)=\frac{1}{50} v^{2}-1
$$
于是,将该题目已知条件代入上面的 $\textcolor{springgreen}{(2)}$ 式,可得:
$$
0-0-1+c(v)=\frac{1}{50} v^{2}-1 \Rightarrow
$$
$$
C(v)=\frac{1}{50} v^{2}
$$
综上可得:
$$
\textcolor{springgreen}{
\boldsymbol{
f(u, v)=\frac{1}{25} u v-e^{-u}(u+1)+\frac{1}{50} v^{2}
}
}
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!