1993 年考研数二真题解析:一定要会用微分的方法计算旋转体的体积而不只是套公式

三、解答题 (本题满分 25 分, 每小题 5 分)

(1) 设 $y=\sin \left[f\left(x^{2}\right)\right]$, 其中 $f$ 具有二阶导数,求 $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.

$$
\frac{\mathrm{~ d} y}{\mathrm{~ d} x}=\cos \left[f\left(x^{2}\right)\right] \cdot f^{\prime}\left(x^{2}\right) \cdot 2 x \Rightarrow
$$

$$
\frac{d^{2} y}{\mathrm{~ d} x^{2}}=
2 \Big\{\cos \left[f\left(x^{2}\right)\right] \cdot f^{\prime}\left(x^{2}\right)+x\left(-\sin \left[f\left(x^{2}\right)\right]\right) \times
$$

$$
f^{\prime}\left(x^{2}\right) \cdot 2 x \cdot f^{\prime}\left(x^{2}\right)+\cos \left[f\left(x^{2}\right)\right] \cdot f^{\prime \prime}\left(x^{2}\right) \cdot 2 x \Big\} \Rightarrow
$$

$$
\frac{d^{2} y}{\mathrm{~ d} x^{2}}=2 f^{\prime}\left(x^{2}\right) \cos \left[f\left(x^{2}\right)\right]+4 x^{2} f^{\prime \prime}\left(x^{2}\right) \cos \left[f\left(x^{2}\right)\right]
$$

$$
-4 x^{2} f^{\prime 2}\left(x^{2}\right) \sin \left[f\left(x^{2}\right)\right]
$$

(2) 求 $\lim \limits_{x \rightarrow-\infty} x\left(\sqrt{x^{2}+100}+x\right)$.

注意:只有在比值运算中才可以“取大头”,本题不可以直接取大头。

错误解法:

$$
x \rightarrow-\infty:
$$

$$
x\left(\sqrt{x^{2}+100}+x\right)=x \sqrt{x^{2}}+x=-x^{2}+x=-\infty .
$$

正确解法一:

$$
x\left(\sqrt{x^{2}+100}+x\right)=\frac{x\left(\sqrt{x^{2}+100}+x\right)\left(\sqrt{x^{2}+100}-x\right)}{\sqrt{x^{2}+100}-x} =
$$

$$
\frac{100 x}{ \sqrt{x^{2}+100}-x } =
$$

由于 $x$ 是趋于负无穷大的,因此,从根号中提取出来后需要加负号:

$$
\frac{100 x}{\textcolor{orangered}{ – }x\left(\sqrt{1+\frac{100}{x^{2}}}+1\right)}=
$$

取大头:

$$
\frac{100 x}{-2 x}=-50
$$

正确解法二:

由于 $x$ 是趋于负无穷大的,因此,从根号中提取出来后需要加负号:

$$
x\left(\sqrt{x^{2}+100}+x\right)=x\left[(\textcolor{orangered}{ -x } ) \sqrt{1+\frac{100}{x^{2}}}+x\right]=
$$

$$
-x^{2}\left[\sqrt{1+\frac{100}{x^{2}}}-1\right] \Rightarrow(1+x)^{2}-1 \sim 2 x \Rightarrow
$$

$$
-x^{2} \cdot \frac{1}{2} \cdot \frac{100}{x^{2}}=-50
$$

(3) 求 $\int_{0}^{\frac{\pi}{4}} \frac{x}{1+\cos 2 x} \mathrm{~d} x$.

$$
\cos 2 x=2 \cos ^{2} x-1 \Rightarrow
$$

$$
\int_{0}^{\frac{\pi}{4}} \frac{x}{1+\cos 2 x} \mathrm{~ d} x=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{x}{\cos ^{2} x} \mathrm{~ d} x=
$$
(7)

$$
\frac{1}{2} \int_{0}^{\frac{\pi}{4}} x \mathrm{~ d} (\tan x)=
$$

$$
\frac{1}{2}\left[\left.x \tan x\right|_{0} ^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \tan x \mathrm{~ d} x\right]=
$$

$$
\frac{1}{2}\left[\frac{\pi}{4}+\left.\ln \cos x\right|_{0} ^{\frac{\pi}{4}}\right]=\frac{\pi}{8}+\frac{1}{2} \ln \frac{\sqrt{2}}{2}=
$$

$$
\frac{\pi}{8}-\frac{1}{4} \ln 2 .
$$

(4) 求 $\int_{0}^{+\infty} \frac{x}{(1+x)^{3}} \mathrm{~d} x$.

$$
\int_{0}^{+\infty} \frac{x}{(1+x)^{3}} \mathrm{~ d} x=\int_{0}^{+\infty} \frac{(1+x)-1}{(1+x)^{3}} \mathrm{~ d} x=
$$

$$
\int_{0}^{+\infty} \frac{1}{(1+x)^{2}} \mathrm{~ d} x-\int_{0}^{+\infty} \frac{1}{(1+x)^{3}} \mathrm{~ d} x=.
$$

$$
\left.\frac{-1}{1+x}\right|_{0} ^{+\infty}-\left.\frac{-1}{2(1+x)^{2}}\right|_{0} ^{+\infty}=
$$

$$
-\left.\frac{1}{1+x}\right|_{0} ^{+\infty}+\left.\frac{1}{2(1+x)^{2}}\right|_{0} ^{+\infty}=\frac{1}{2}
$$

(5) 求微分方程 $\left(x^{2}-1\right) \mathrm{d} y+(2 x y-\cos x) \mathrm{d} x=0$ 满足初始条件 $y(0)=1$ 的特解.

变形:

$$
\left(x^{2}-1\right) \mathrm{~ d} y+(2 x y-\cos x) \mathrm{~ d} x=0 \Rightarrow
$$

$$
\left(x^{2}-1\right) y^{\prime}+(2 x y-\cos x)=0 \Rightarrow
$$

$$
y^{\prime}+\frac{2 x}{x^{2}-1} y=\frac{\cos x}{x^{2}-1} \Rightarrow
$$

$$
y= \Big[\int \frac{\cos x}{x^{2}-1} \cdot e^{\int \frac{2 x}{x^{2}-1} \mathrm{~ d} x} +C \Big] e^{-\int \frac{2 x}{x^{2}-1} \mathrm{~ d} x}
$$

$$
y=\left[\left[\frac{\cos x}{x^{2}-1}\left(x^{2}-1\right) \mathrm{~ d} x t_{j} c\right] \frac{1}{x^{2}-1} \Rightarrow\right.
$$

$$
y=\frac{1}{x^{2}-1}(\sin x+C) \Rightarrow y(0)=1 \Rightarrow C=-1 \Rightarrow
$$

$$
y=\frac{1}{x^{2}-1}(\sin x-1)
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress