三、解答题 (本题满分 25 分, 每小题 5 分)
(1) 已知 $\lim \limits_{x \rightarrow \infty}\left(\frac{x+a}{x-a}\right)^{x}=9$, 求常数 $a$.
$$
x \rightarrow \infty \Rightarrow
$$
$$
\left(1+\frac{x+a}{x-a}-1\right)^{x}=\left(1+\frac{x+a-x+a}{x-a}\right)^{x}=
$$
$$
\left(1+\frac{2 a}{x-a}\right)^{\frac{x-a}{2 a} \cdot x \cdot \frac{2 a}{x-a}}=
$$
$$
e^{\frac{2 a x}{x-a}}=e^{2 a}=9 \Rightarrow 2 a=\ln 9 \Rightarrow a=\ln 3
$$
(2) 求由方程 $2 y-x=(x-y) \ln (x-y)$ 所确定的函数 $y=y(x)$ 的微分 $\mathrm{d} y$.
注意:求微分的本质就是求导,只是在求微分的时候要保留 $\mathrm{d} x$ 和 $\mathrm{d} y$.
$$
2 y-x=(x-y) \ln (x-y) \Rightarrow
$$
$$
2 y-x=x \ln (x-y)-y \ln (x-y) \Rightarrow
$$
求导:
$$
2 \frac{\mathrm{d} y}{\mathrm{d} x}-1=\ln (x-y)+x \cdot \frac{1-\frac{\mathrm{d} y}{\mathrm{d} x}}{x-y}-
$$
$$
\left[\frac{\mathrm{d} y}{\mathrm{d} x} \ln (x-y)+y \cdot \frac{1-\frac{\mathrm{d} y}{\mathrm{d} x}}{x-y}\right] \Rightarrow
$$
$$
2 \frac{\mathrm{d} y}{\mathrm{d} x}-1=\ln (x-y)-\frac{\mathrm{d} y}{\mathrm{d} x} \ln (x-y)+
$$
$$
(x-y) \cdot \frac{1-\frac{\mathrm{d} y}{\mathrm{d} x}}{x-y} \Rightarrow
$$
$$
2 \frac{\mathrm{d} y}{\mathrm{d} x}-1=\ln (x-y)-\frac{\mathrm{d} y}{\mathrm{d} x} \ln (x-y)+1-\frac{\mathrm{d} y}{\mathrm{d} x} \Rightarrow
$$
$$
3 \frac{\mathrm{d} y}{\mathrm{d} x}=\ln (x-y)-\frac{\mathrm{d} y}{\mathrm{d} x} \ln (x-y)+2 \Rightarrow
$$
$$
\frac{\mathrm{d} y}{\mathrm{d} x}[3+\ln (x-y)]=2+\ln (x-y) \Rightarrow
$$
$$
\mathrm{d} y=\frac{\ln (x-y)+2}{\ln (x-y)+3} \mathrm{d} x \Rightarrow \mathrm{d} y=\frac{\ln (x-y)+3-1}{\ln (x-y)+3} \Rightarrow
$$
$$
\mathrm{d} y=1-\frac{1}{\ln (x-y)+3}
$$
(3) 求曲线 $y=\frac{1}{1+x^{2}} \quad (x>0)$ 的拐点.
注意:本题已经限定了 $x > 0$.
$$
y^{\prime}=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \Rightarrow
$$
$$
y^{\prime \prime}=\frac{-2\left(1+x^{2}\right)^{2}+2 x \cdot 2\left(1+x^{2}\right) \cdot 2 x}{\left(1+x^{2}\right)^{4}} \Rightarrow
$$
$$
y^{\prime \prime} = 0 \Rightarrow
$$
$$
-2\left(1+x^{2}\right)^{2}+8 x^{2}\left(1+x^{2}\right)=0 \Rightarrow 1+x^{2} \neq 0 \Rightarrow
$$
$$
-2\left(1+x^{2}\right)+8 x^{2}=0 \Rightarrow-\left(1+x^{2}\right)+4 x^{2}=0 \Rightarrow
$$
$$
4 x^{2}-1-x^{2}=0 \Rightarrow 3 x^{2}-1=0 \Rightarrow x= \pm \frac{\sqrt{3}}{3}
$$
$$
x>0 \Rightarrow x=\frac{\sqrt{3}}{3} \Rightarrow y\left(\frac{\sqrt{3}}{3}\right)=\frac{3}{4} \Rightarrow
$$
拐点为:
$$
\left(\frac{\sqrt{3}}{3}, \frac{3}{4}\right)
$$
(4) 计算 $\int \frac{\ln x}{(1-x)^{2}} \mathrm{~d} x$.
由于:
$$
\left(\frac{1}{1-x}\right)^{\prime}=\frac{1}{(1-x)^{2}}
$$
因此:
$$
\int \frac{\ln x}{(1-x)^{2}} \mathrm{d} x=\int \ln x \mathrm{~ d} \left(\frac{1}{1-x}\right) \Rightarrow
$$
$$
\frac{\ln x}{1-x}-\int \frac{1}{1-x} \cdot \frac{1}{x} \mathrm{d} x \Rightarrow
$$
又:
$$
\frac{1}{1-x} \cdot \frac{1}{x}=\frac{1}{1-x}+\frac{1}{x}=\frac{1}{x-x^{2}} \Rightarrow
$$
于是:
$$
\frac{\ln x}{1-x}-[-\ln |1-x|+\ln x]+C
$$
$$
\frac{\ln x}{1-x}+\ln |1-x|-\ln x+C
$$
(5) 求微分方程 $x \ln x \mathrm{~d} y+(y-\ln x) \mathrm{d} x=0$ 满足条件 $\left.y\right|_{x=\mathrm{e}}=1$ 的特解.
先变形:
$$
x \ln x \mathrm{d} y+(y-\ln x) \mathrm{d} x=0 \Rightarrow
$$
$$
x \ln x \frac{\mathrm{d} y}{\mathrm{d} x}+(y-\ln x)=0 \Rightarrow
$$
$$
y^{\prime}+\frac{y-\ln x}{x \ln x}=0 \Rightarrow y^{\prime}+\frac{1}{x \ln x} y=\frac{1}{x} \Rightarrow
$$
是一个一阶线性微分方程,因此:
$$
y=\left[\int \frac{1}{x} \cdot e^{\int \frac{1}{x \ln x} \mathrm{d} x} \mathrm{d} x+c\right] e^{-\int \frac{1}{x \ln x} \mathrm{d} x} \Rightarrow
$$
又:
$$
\int \frac{1}{x \ln x} \mathrm{d} x=\int \frac{1}{\ln x} \mathrm{d} (\ln x)=\ln (\ln x) \Rightarrow
$$
$$
e^{\int \frac{1}{x \ln x} \mathrm{d} x}=\ln x
$$
$$
e^{-\int \frac{1}{x \ln x} \mathrm{d} x} = e^{\ln (\ln x)^{-1}}=\frac{1}{\ln x} \Rightarrow
$$
于是:
$$
y=\left[\int \frac{1}{x} \cdot \ln x \mathrm{d} x+C\right] \frac{1}{\ln x} \Rightarrow
$$
$$
y=\left[\int \ln x \mathrm{d} (\ln x)+C\right] \frac{1}{\ln x} \Rightarrow
$$
$$
y=\left[\frac{1}{2}(\ln x)^{2}+C\right] \frac{1}{\ln x} \Rightarrow
$$
$$
y=\frac{1}{2} \ln x+\frac{C}{\ln x} \Rightarrow
$$
又:
$$
x=e, \ y=1 \Rightarrow
$$
$$
\frac{1}{2}+C=1 \Rightarrow C=\frac{1}{2} \Rightarrow
$$
因此:
$$
y=\frac{1}{2} \ln x+\frac{1}{2 \ln x}
$$