用一个小技巧牢记求导公式 $(u v)^{\prime}$ $=$ $u^{\prime} v$ $+$ $u v^{\prime}$

一、问题描述 问题描述 - 荒原之梦

已知函数 $u$ $=$ $u(x)$, $v$ $=$ $v(x)$, 则针对 $(u v)^{\prime}$ 的求导计算公式如下:

$$
(u v)^{\prime} = u^{\prime} v + u v^{\prime}
$$

但是,由于一些原因,有时候我们可能会无法确定 $(u v)^{\prime}$ 到底是等于 $u^{\prime} v$ $\textcolor{orange}{+}$ $u v^{\prime}$ 还是等于 $u^{\prime} v$ $\textcolor{red}{-}$ $u v^{\prime}$

二、解决方案 解决方案 - 荒原之梦

为了解决前面提到的问题,我们可以参考如下解决方案。

我们知道:

$$
(x^{2})^{\prime} = \textcolor{cyan}{2x}
$$

换个表述方式就是:

$$
(x^{2})^{\prime} =
$$

$$
(\textcolor{tan}{x} \cdot \textcolor{yellow}{x})^{\prime} =
$$

$$
(\textcolor{tan}{x})^{\prime} \cdot \textcolor{yellow}{x} \textcolor{orange}{+} \textcolor{tan}{x} \cdot (\textcolor{yellow}{x})^{\prime} =
$$

$$
\textcolor{tan}{1} \cdot \textcolor{yellow}{x} \textcolor{orange}{+} \textcolor{tan}{x} \cdot \textcolor{yellow}{1} =
$$

$$
\textcolor{yellow}{x} \textcolor{orange}{+} \textcolor{tan}{x} = \textcolor{cyan}{2x}
$$

上述过程就辅助验证了 $(u v)^{\prime}$ $=$ $u^{\prime} v$ $\textcolor{orange}{+}$ $u v^{\prime}$ 而不是 $(u v)^{\prime}$ $=$ $u^{\prime} v$ $\textcolor{red}{-}$ $u v^{\prime}$——否则,$(x^{2})^{\prime}$就会是 $x$ $-$ $x$ $=$ $0$, 而不是等于 $2 x$ 了。


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress