题目
函数 $f(x) = \ln |(x-1)(x-2)(x-3)|$ 的驻点个数为 $?$
$$
A. 0
$$
$$
B. 1
$$
$$
C. 2
$$
$$
D. 3
$$
函数 $f(x) = \ln |(x-1)(x-2)(x-3)|$ 的驻点个数为 $?$
$$
A. 0
$$
$$
B. 1
$$
$$
C. 2
$$
$$
D. 3
$$
要理解为什么 $(\ln |x|)^{\prime}=\frac{1}{x}$, 只需要知道:
在求导时,只要涉及的自变量不是 $x$ 这样的【单一的自变量】,就需要考虑使用【复合函数求导】的公式。
继续阅读“为什么 $(\ln |x|)^{\prime}$ $=$ $\frac{1}{x}$ ?”设函数 $f(x)$ 在 $x=0$ 处可导,且 $f(0)=0$, 则 $\lim_{x \rightarrow 0} \frac{x^{2} f(x) – 2f(x^{3})}{x^{3}} = ?$
$$
A. -2f^{‘}(0)
$$
$$
B. -f^{‘}(0)
$$
$$
C. f^{‘}(0)
$$
$$
D. 0
$$
已知当 $x \rightarrow 0$ 时,函数 $f(x) = 3 \sin x – \sin 3x$ 与 $cx^{k}$ 是等价无穷小,则 $?$
$$
A. k=1,c=4
$$
$$
B. k=1,c=-4
$$
$$
C. k=3,c=4
$$
$$
D. k=3,c=-4
$$
设 $A$ 为三阶矩阵,$|A|=3$, $A^{}$ 为 $A$ 的伴随矩阵,若交换 $A$ 的第一行与第二行得矩阵 $B$, 则 $|BA^{}|=?$
继续阅读“2012年考研数二第14题解析”设 $z = f(\ln x + \frac{1}{y})$, 其中函数 $f(u)$ 可微,则 $x \frac{\partial z}{\partial x} + y^{2} \frac{\partial z}{\partial y} = ?$
继续阅读“2012年考研数二第11题解析”