五、解答题 (本题满分 9 分)
求微分方程 $y^{\prime \prime}-3 y^{\prime}+2 y=x \mathrm{e}^{x}$ 的通解.
$$
\lambda_{1}-3 \lambda+2=0 \Rightarrow \lambda=\frac{3 \pm \sqrt{9-8}}{2} \Rightarrow
$$
$$
\lambda_{1}=\frac{3+1}{2}=2, \lambda_{2}=\frac{3-1}{2}=1
$$
于是可知,齐通为:
$$
y^{*}=C_{1} e^{2 x}+C_{2} e^{x}
$$
非齐特设为:
$$
Y^{*}=x^{k}(A x+B) e^{x} \Rightarrow
$$
则:
$$
Y^{*}=x(A x+B) e^{x} \Rightarrow
$$
$$
\left(Y^{*}\right)^{\prime}=(A x+B) e^{x}+x\left[A e^{x}+(A x+B) e^{x}\right]
$$
$$
\left(Y^{*}\right)^{\prime \prime}=A e^{x}+(A x+B) e^{x}+A e^{x}+(A x+B) e^{x}
$$
$$
+x\left[A e^{x}+A e^{x}+(A x+B) e^{x}\right]
$$
$$
\left(Y^{*}\right)^{\prime \prime}-3\left(Y^{*}\right)^{\prime}+2\left(Y^{*}\right)=x e^{*} \Rightarrow
$$
$$
A+A x+B+A+A x+B+A x+A x+A x^{2}+
$$
$$
B x-3 A x-3 B-3 A x-3 A x^{2}-3 B x+
$$
$$
2 A x^{2}+2 B x=x \Rightarrow
$$
$$
\left\{\begin{array} { l }
{ 2 A – B = 0 } \\ { – 2 A = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=\frac{-1}{2} \\ B=-1
\end{array} \Rightarrow\right.\right.
$$
$$
Y^{*}=-x\left(\frac{1}{2} x+1\right) e^{x} \Rightarrow
$$
于是,非齐通为:
$$
Y=y^{*}+Y^{*}=C_{1} e^{2 x}+C_{2} e^{x}-x\left(\frac{1}{2} x+1\right) e^{x}
$$