2011年考研数二第22题解析:线性相关、线性表示、秩、可逆矩阵

题目

设向量组 $\alpha_{1} = (1,0,1)^{\top}$, $\alpha_{2} = (0,1,1)^{\top}$, $\alpha_{3} = (1,3,5)^{\top}$ 不能由向量组 $\beta_{1}=(1,1,1)^{\top}$, $\beta_{2} = (1,2,3)^{\top}$, $\beta_{3} = (3,4,a)^{\top}$ 线性表示。

$(Ⅰ)$ 求 $a$ 的值;

$(Ⅱ)$ 将 $\beta_{1}$, $\beta_{2}$, $\beta_{3}$ 用 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 线性表示。

解析

第 $(Ⅰ)$ 问

假设,$\alpha_{1}, \alpha_{2}, \alpha_{3}$ 可由 $\beta_{1}, \beta_{2}, \beta_{3}$ 线性表示。

则,根据线性表示的性质可知,矩阵 $(\beta_{1}, \beta_{2}, \beta_{3})$ 的秩与矩阵 $(\beta_{1}, \beta_{2}, \beta_{3}, \alpha_{1})$ 的秩相等,

即:

$$
r(\beta_{1}, \beta_{2}, \beta_{3}) = r(\beta_{1}, \beta_{2}, \beta_{3}, \alpha_{1}) \Rightarrow
$$

$$
r(\beta_{1}, \beta_{2}, \beta_{3}) = r(\beta_{1}, \beta_{2}, \alpha_{1}, \beta_{3})
$$

又:

$$
|\beta_{1}, \beta_{2}, \alpha_{1}| =
$$

$$
\begin{vmatrix}
1 & 1 & 1\\
1 & 2 & 0\\
1 & 3 & 1
\end{vmatrix}
=2 \neq 0
$$

于是:

$$
r(\beta_{1}, \beta_{2}, \beta_{3}) = r(\beta_{1}, \beta_{2}, \alpha_{1}, \beta_{3}) = 3.
$$

因此,若 $\alpha_{1}, \alpha_{2}, \alpha_{3}$ 【不】可由 $\beta_{1}, \beta_{2}, \beta_{3}$ 线性表示,则:

$$
r(\beta_{1}, \beta_{2}, \beta_{3}) \neq 3.
$$

又:

$$
r(\beta_{1}, \beta_{2}, \beta_{3}) \leqslant 3.
$$

于是:

$$
r(\beta_{1}, \beta_{2}, \beta_{3}) < 3.
$$

即:

$$
|\beta_{1}, \beta_{2}, \beta_{3}| = 0 \Rightarrow
$$

$$
\begin{vmatrix}
1 & 1 & 3\\
1 & 2 & 4\\
1 & 3 & a
\end{vmatrix}
=0 \Rightarrow
$$

$$
a=5.
$$

第 $(Ⅱ)$ 问

根据定义可知,通过计算如下式子,求出 $a$, $b$, $c$ 的值,即可将 $\beta_{1}$ 用 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 表示出来:

$$
(\alpha_{1}, \alpha_{2}, \alpha_{3})\begin{bmatrix}
a\\
b\\
c
\end{bmatrix}=\beta_{1}
\Rightarrow
$$

$$
\begin{bmatrix}
1 & 0 & 1\\
0 & 1 & 3\\
1 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
a\\
b\\
c
\end{bmatrix}
=\begin{bmatrix}
1\\
1\\
1
\end{bmatrix}.
$$

即:

$$
\beta_{1} = a \alpha_{1} + b \alpha_{2} + c \alpha_{3}. ①
$$

同理,我们可以有:

$$
\beta_{2} = d \alpha_{1} + e \alpha_{2} + f \alpha_{3}. ②
$$

$$
\beta_{3} = g \alpha_{1} + h \alpha_{2} + i \alpha_{3}. ③
$$

若将 $①$, $②$, $③$ 式合并在一起,就得到了:

$$
\begin{bmatrix}
1 & 0 & 1\\
0 & 1 & 3\\
1 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
a & d & h\\
b & e & i\\
c & f & j
\end{bmatrix}
=\begin{bmatrix}
1 & 1 & 3\\
1 & 2 & 4\\
1 & 3 & 5
\end{bmatrix}.
$$

若令:

$$
A = \begin{bmatrix}
1 & 0 & 1\\
0 & 1 & 3\\
1 & 1 & 5
\end{bmatrix};
$$

$$
X = \begin{bmatrix}
a & d & h\\
b & e & i\\
c & f & j
\end{bmatrix};
$$

$$
B = \begin{bmatrix}
1 & 1 & 3\\
1 & 2 & 4\\
1 & 3 & 5
\end{bmatrix}.
$$

则有:

$$
AX=B \Rightarrow
$$

$$
X = A^{-1}B.
$$

接下来开始求 $A^{-1}$.

对下面的矩阵做初等行变换:

$$
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 0\\
0 & 1 & 3 & 0 & 1 & 0\\
1 & 1 & 5 & 0 & 0 & 1
\end{bmatrix}
\Rightarrow
初等行变换
\Rightarrow
$$

$$
\begin{bmatrix}
1 & 0 & 0 & 2 & 1 & -1\\
0 & 1 & 0 & 3 & 4 & -3\\
0 & 0 & 1 & -1 & -1 & 1
\end{bmatrix}
$$

于是:

$$
A^{-1} =
\begin{bmatrix}
2 & 1 & -1\\
3 & 4 & -3\\
-1 & -1 & 1
\end{bmatrix}
$$

近而:

$$
X = A^{-1}B =
$$

$$
\begin{bmatrix}
2 & 1 & -1\\
3 & 4 & -3\\
-1 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 3\\
1 & 2 & 4\\
1 & 3 & 5
\end{bmatrix}
=\begin{bmatrix}
2 & 1 & 5\\
4 & 2 & 10\\
-1 & 0 & -2
\end{bmatrix}
$$

即:

$$
\begin{bmatrix}
a & d & h\\
b & e & i\\
c & f & j
\end{bmatrix}
=\begin{bmatrix}
2 & 1 & 5\\
4 & 2 & 10\\
-1 & 0 & -2
\end{bmatrix}
$$

综上可知:

$$
\beta_{1} = 2 \alpha_{1} + 4 \alpha_{2} – \alpha_{3};
$$

$$
\beta_{2} = 1 \alpha_{1} + 2 \alpha_{2} + 0 \alpha_{3};
$$

$$
\beta_{3} = 5 \alpha_{1} + 10 \alpha_{2} – 2 \alpha_{3}.
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress