三、解答题 (本题满分 25 分, 每小题 5 分)
(1) 设 $\left\{\begin{array}{l}x=t \cos t, \\ y=t \sin t,\end{array}\right.$ 求 $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
$$
\frac{\mathrm{~ d} y}{\mathrm{~ d} x}=\frac{\mathrm{~ d} y}{\mathrm{~ d} t} \cdot \frac{\mathrm{~ d} t}{\mathrm{~ d} x} \Rightarrow \frac{\mathrm{~ d} y}{\mathrm{~ d} t}=\sin t+t \cos t$$
$$
\frac{\mathrm{~ d} x}{\mathrm{~ d} t}=\cos t-t \sin t \Rightarrow
$$
$$
\frac{\mathrm{~ d} y}{\mathrm{~ d} x}=\frac{\sin t+t \cos t}{\cos t-t \sin t} \Rightarrow \frac{d^{2} y}{\mathrm{~ d} x^{2}}=\frac{d}{\mathrm{~ d} t}\left(\frac{\mathrm{~ d} y}{\mathrm{~ d} x}\right) \cdot \frac{\mathrm{~ d} t}{\mathrm{~ d} x} \Rightarrow
$$
$$
\frac{\mathrm{d}}{\mathrm{~ d} t}\left(\frac{\mathrm{~ d} y}{\mathrm{~ d} x}\right)=\frac{t^{2}+2}{(\cos t-t \sin t)^{2}}
$$
$$
\frac{d^{2} y}{\mathrm{~ d} x^{2}}=\frac{t^{2}+2}{(\cos t-t \sin t)^{3}}
$$
(2) 计算 $\int_{1}^{4} \frac{\mathrm{d} x}{x(1+\sqrt{x})}$.
$$
t=\sqrt{x} \Rightarrow t^{2}=x \Rightarrow t \in(1,2) \Rightarrow \mathrm{~ d} x=2 t \mathrm{~ d} t \Rightarrow
$$
$$
\int_{1}^{4} \frac{\mathrm{~ d} x}{x(1+\sqrt{x})}=2 \int_{1}^{2} \frac{t \mathrm{~ d} t}{t^{2}(1+t)}=
$$
$$
2 \int_{1}^{2} \frac{\mathrm{~ d} t}{t(1+t)} \Rightarrow 2 \int_{1}^{2}\left(\frac{1}{t}-\frac{1}{t+1}\right) \mathrm{~ d} t=
$$
$$
\left.2(\ln t-\ln (t+1))\right|_{1} ^{2}=2[\ln 2-\ln 3-(0-\ln 2)]=
$$
$$
2(2 \ln 2-\ln 3)=2(\ln 4-\ln 3)=2 \ln \frac{4}{3}
$$
(3) 求 $\lim \limits_{x \rightarrow 0} \frac{x-\sin x}{x^{2}\left(\mathrm{e}^{x}-1\right)}$.
$$
x \rightarrow 0 \Rightarrow \frac{\frac{1}{6} x^{3}}{x^{2} \cdot x}=\frac{1}{6}
$$
(4) 求 $\int x \sin ^{2} x \mathrm{~d} x$.
错误解法(这是不定积分,不能用定积分的公式计算):
$$
\int x \sin ^{2} x \mathrm{~ d} x=\frac{\pi}{2} \int \sin ^{2} x \mathrm{~ d} x=
$$
$$
\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}=\frac{\pi^{2}}{8}
$$
正确解法(降幂):
$$
\cos 2 \alpha=1-2 \sin ^{2} \alpha \Rightarrow
$$
$$
\sin ^{2} \alpha=\frac{1}{2}(1-\cos 2 \alpha) \Rightarrow
$$
$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)
$$
$$
\int x \sin ^{2} x \mathrm{~ d} x=\frac{1}{2} \int x(1-\cos 2 x) \mathrm{~ d} x=
$$
$$
\frac{1}{2} \int x \mathrm{~ d} x-\frac{1}{2} \int x \cos 2 x \mathrm{~ d} x=
$$
$$
\frac{1}{4} x^{2}-\frac{1}{4} \int x \mathrm{~ d} (\sin 2 x)=
$$
$$
\frac{1}{4} x^{2}-\frac{1}{4} x \sin 2 x+\frac{1}{4} \cdot \frac{1}{2} \int \sin 2 x \mathrm{~ d} (2 x)=
$$
$$
\frac{1}{4} x^{2}-\frac{x}{4} \sin 2 x-\frac{1}{8} \cos 2 x+C
$$
(5) 求微分方程 $x y^{\prime}+y=x \mathrm{e}^{x}$ 满足 $y(1)=1$ 的特解.
$$
x y^{\prime}+y=x e^{x} \Rightarrow y^{\prime}+\frac{1}{x} y=e^{x} \Rightarrow
$$
$$
y=\left[\int e^{x} \cdot e^{\int \frac{1}{x} \mathrm{~ d} x} \mathrm{~ d} x+c\right] e^{-\int \frac{1}{x} \mathrm{~ d} x} \Rightarrow
$$
$$
y=\left[\left[x e^{x} \mathrm{~ d} x+c\right] \cdot \frac{1}{x} \Rightarrow\right.
$$
$$
y=\left[x e^{x}-e^{x}+c\right] \cdot \frac{1}{x} \Rightarrow x=1, y=1 \Rightarrow
$$
$$
1=(e-e+c) \Rightarrow c=1 \Rightarrow
$$
$$
y=\left(x e^{x}-e^{x}+1\right) \cdot \frac{1}{x}
$$