2008 年研究生入学考试数学一填空题第 2 题解析

一、题目

曲线 $\sin (xy)$ $+$ $\ln(y-x)$ $=x$ 在点 $(0,1)$ 处的切线方程为__.

本题需要用到求导法则和切线方程公式的相关知识。

需要用到的求导公式有:

$(\sin x)’$ $=$ $\cos x$;

$(\ln x)’$ $=$ $\frac{1}{x}$;

$(ab)’$ $=$ $a’b$ $+$ $ab’$;

$f'(x)$ $=$ $f'[\phi(x)]$ $\cdot$ $\phi'(x)$.

求导过程中另外需要注意的两点如下:

  • 对 $x$ 求导,则包括 $x$ 和其他常量都要按照求导公式进行计算,而除了 $x$ 之外的其他变量则只加上求导符号 (例如: $’$) 即可,不进行求导计算;
  • 等式两边对同一变量求导后,等式仍然成立。因为求导前是等式,求导规则也一致,则求导后等式两边仍然恒等。

切线方程的计算公式如下:

$y$ $-$ $f(x_{0})$ $=$ $f'(x_{0})$ $(x-x_{0})$.

解答思路如下:

由于切线方程的计算公式中包含导数 $f'(x)$,因此,首先需要计算出导数。原式两边同时对 $x$ 求导可以产生导数 $y’$:

$[\sin(xy)$ $+$ $\ln(y-x)]’$ $=$ $(x)’$ $\Rightarrow$ $\cos(xy)$ $(x’y+xy’)$ $+$ $\frac{1}{y-x}$ $(y-x)’$ $=$ $1$ $\Rightarrow$ $\cos(xy)$ $(y$ $+$ $xy’$ $)$ $+$ $\frac{1}{y-x}$ $(y’$ $-$ $1$ $)$ $=$ $1$.

要求的是曲线在点 $(0,1)$ 处的切线方程,因此,我们把 $x$ $=$ $0$; $y$ $=$ $1$带入上面的到的式子中,得:

$1$ $\cdot$ $1$ $+$ $1$ $\cdot$ $(y’$ $-$ $1$ $)$ $=$ $1$ $\Rightarrow$ $1$ $+$ $y’$ $-$ $1$ $=$ $1$ $\Rightarrow$ $y’$ $=$ $1$.

即:

$y'(0)$ $=$ $1$.

将上述结果带入切线方程求导公式得:

$y$ $-$ $1$ $=$ $1$ $\cdot$ $($ $x$ $-$ $0$ $)$ $\Rightarrow$ $y$ $=$ $x$ $+$ $1$.

综上可知,本题得答案是:$y$ $=$ $x$ $+$ $1$.

EOF

2008 年研究生入学考试数学一选择题第 1 题解析

一、题目

设函数 $f(x)$ $=$ $\int_{0}^{x^{2}}$ $\ln(2+t)$ $dt$, 则 $f'(x)$ 的零点个数()

( A ) $0$.

( B ) $1$.

( C ) $2$.

( D ) $3$.

二、解析

本题可以使用积分和导数的相关定理解出。

涉及到的积分知识如下:

(1) 定积分基本性质

$\int_{a}^{b}$ $f(x)$ $dx$ $=$ $\int_{a}^{b}$ $f(t)dt$;

(2) 变上限积分函数求导

  • 若 $f(x)$ 在 $[a,b]$ 上连续,则 $F(x)$ $=$ $\int_{a}^{x}$ $f(t)$ $dt$ 在 $[a,b]$ 上可导,且 $F'(x)$ $=$ $f(x)$.
  • 若 $f(x)$ 在 $[a,b]$ 上连续,$\phi(x)$ 在 $[a,b]$ 上可导,设$F(x)$ $=$ $\int_{a}^{\phi(x)}$ $f(t)$ $dt$, 则:

$F'(x)$ $=$ $f[\phi(x)]$ $\cdot$ $\phi'(x)$.

涉及到的求导知识如下:

$(x^{a})’$ $=$ $ax^{a-1}$;

此外,我们需要知道的是,“函数零点”指的是 $f(x)$ $=$ $0$ 时,对应的自变量 $x$ 的数值,“函数零点” 不是一个点,而是一个数值。

解题思路如下:

根据变上限积分函数求导法则,有:

$f'(x)$ $=$ $\ln(2+x^{2})$ $\cdot$ $(x^{2})’$ $=$ $2$ $x$ $\ln(2+x^{2})$.

则要求函数 $f'(x)$ 的零点的个数,就是求 $2$ $x$ $\ln(2+x^{2})$ $=$ $0$ 的解的个数。

要使 $2$ $x$ $\ln(2+x^{2})$ $=$ $0$ 成立,则有以下三种情况(分情况讨论时要注意“不重不漏”):

(1) $2$ $x$ $=$ $0$ 且 $\ln(2+x^{2})$ $\neq$ $0$

此时解出 $x$ $=$ $0$.

(2) $2$ $x$ $\neq$ $0$ 且 $\ln(2+x^{2})$ $=$ $0$.

无解。

由于 $1$ $+$ $x^{2}$ $\geq$ $2$ 始终成立,而且当 $x$ $=$ $1$ 时,$\ln(x)$ $=$ $0$, 当 $x$ $>$ $1$ 时,$\ln(x)$ $>$ $0$.

所以,$\ln(2+x^{2})$ $>$ $0$ 始终成立,与 $x$ 轴没有交点。

(3) $2$ $x$ $=$ $0$ 且 $\ln(2+x^{2})$ $=$ $0$

$2$ $x$ $=$ $\ln(2+x^{2})$ $=$ $0$ $\Rightarrow$ 无解.

综上可知,当 $2$ $x$ $\ln(2+x^{2})$ $=$ $0$ 时,有:

$x$ $=$ $0$.

因此,只有一个零点,答案是:$B$.

EOF

2008 年研究生入学考试数学一解答题第 1 题解析(两种方法+手写作答)

一、题目

求极限 $\lim_{x \rightarrow 0}$ $\frac{[\sin x-\sin (\sin x)] \sin x}{x^{4}}$

二、解析

当题目中要求的是“极限”,而且出现了 $x$ $\rightarrow$ $0$ 时就要考虑是不是要用到或者可以用到等价无穷小。

还需要考虑的可能用到的知识是洛必达法则。当 $x$ $\rightarrow$ $0$ 时可能产生 $\frac{0}{0}$ 型的洛必达或者 $\frac{\infty}{\infty}$ 型的洛必达。而且,洛必达法则就是为求极限而生的,可以把对函数的求极限转换成对函数的导数求极限,从而可能化简原式。

方法一

本题考查的是等价无穷小,需要用到的两个等价无穷小如下(当 $x$ $\rightarrow$ $0$ 时):

$x$ $\sim$ $\sin x$;

$x$ $-$ $\sin x$ $\sim$ $\frac{1}{6}x^{3}$.

于是有:

原式 $=$ $\lim_{x \rightarrow 0}$ $\frac{[\sin x-\sin (\sin x)]\sin x}{\sin^{4}x}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{\sin x-\sin(\sin x)}{\sin^{3} x}$

令 $\sin x$ $=$ $t$, 则有:

原式 $=$ $\lim_{x \rightarrow 0}$ $\frac{t-\sin(t)}{t^{3}}$

由于,当 $x$ $\rightarrow$ $0$ 时,$\sin x$ $\rightarrow$ $0$, 于是有 $t$ $\rightarrow$ $0$, 因此根据常见的等价无穷小,有:

$t$ $-$ $\sin t$ $\sim$ $\frac{1}{6}t^{3}$

因此有:

原式 $=$ $\lim_{x \rightarrow 0}$ $\frac{\frac{1}{6}t^{3}}{t^{3}}$ $=$ $\frac{1}{6}$

方法二

本题也可以结合使用等价无穷小与 $\frac{0}{0}$ 型洛必达等定理解出。

需要用到的等价无穷小有(当 $x$ $\rightarrow$ $0$ 时):

$x$ $\sim$ $\sin x$;

$1$ $-$ $\cos x$ $\sim$ $\frac{1}{2}x^{2}$

需要用到的洛必达法则公式是:

$\lim_{x \rightarrow x_{0}}$ $\frac{f(x)}{g(x)}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{f'(x)}{g'(x)}$

需要用到的求导规则是:

$(\sin x)’$ $=$ $\cos x$;

$(u-v)’$ $=$ $u’$ $-$ $v’$;

$f'(x)$ $=$ $f'[g(x)]$ $g'(x)$.

解答思路如下:

由于,当 $x$ $\rightarrow$ $0$ 时,$\sin x$ $\sim x$, 于是有:

原式 $=$ $\lim_{x \rightarrow 0}$ $\frac{[\sin x-\sin(\sin x)]\sin x}{x^{3}\sin x}$ $=$ $\lim_{x \rightarrow0}$ $\frac{\sin x-\sin(\sin x)}{x^{3}}$ (1)

由于,当 $x$ $\rightarrow$ $0$ 时,有:

$\sin x$ $-$ $\sin(\sin x)$ $\rightarrow$ $0$, 且存在导数;

$x^{3}$ $\rightarrow$ $0$, 且存在导数.

因此,可以对 (1) 式使用洛必达法则:

原式 $=$ $\lim_{x\rightarrow0}$ $\frac{[\sin x-\sin(\sin x)]’}{(x^{3})’}$ $=$ $\lim_{x\rightarrow0}$ $\frac{\cos x-\cos(\sin x)\cos x}{3x^{2}}$

化简得:

原式 $=$ $\lim_{x\rightarrow0}$ $\frac{\cos[1-\cos(\sin x)]}{3x^{2}}$

由于,当 $x$ $\rightarrow$ $0$ 时,$\cos x$ $\rightarrow$ $1$, 因此,进一步化简得:

原式 $=$ $\lim_{x\rightarrow0}$ $\frac{1-\cos(\sin x)}{3x^{2}}$

使用等价无穷小进一步计算可得:

原式 $=$ $\lim_{x\rightarrow0}$ $\frac{\frac{1}{2}\sin^{2}x}{3x^{2}}$ $=$ $\frac{\frac{1}{2}}{3}$ $=$ $\frac{1}{6}$

方法一的手写作答:

方法二的手写作答:

EOF

2017 年研究生入学考试数学一选择题第 4 题解析(两种方法)

一、题目

甲乙两人赛跑,计时开始时,甲在乙前方 $10$(单位:m)处. 图中,实线表示甲的速度曲线 $v$ $=$ $v_{1}(t)$ (单位 : m/s),虚线表示乙的速度曲线 $v$ $=$ $v_{2}(t)$ (单位 : m/s),三块阴影部分面积的数值依次为 $10$, $20$, $3$. 计时开始后乙追上甲的时刻记为 $t_{0}$ (单位 : s),则()

( A ) $t_{0}$ $=$ $10$.

( B ) $15$ $<$ $t_{0}$ $<$ $20$.

( C ) $t_{0}$ $=$ $25$.

( D ) $t_{0}$ $>$ $25$.

二、解析

方法一

从物理学的角度,本题就是考查速度与路程的关系。

题目中给出的 $X$ $-$ $Y$ 坐标图像是“时间-速度”图像。那么,根据物理学知识我们知道,该曲线与坐标轴围成的图像的面积就是走过的路程。我们又知道,实线表示甲,虚线表示乙,而且刚开始时甲在乙前面 $10$ 米处。

由图像可知,当 $t$ $=$ $10$ 时,甲在乙前面 $20$ 米处,当 $t$ $=$ $25$ 时,乙在第 $10$ 秒到第 $25$ 秒之间的 $15$ 秒时间里比甲多跑了 $20$ 米,正好抵消了之前乙落后于甲的 $20$ 米路程。因此,当 $t$ $=$ $25$ 时,乙追上了甲,即 $t_{0}$ $=$ $25$。

综上可知,本题的正确选项是:$C$.

方法二

从数学的角度,本题主要考查的是定积分的基本运算和定积分的几何意义。

使用高等数学解答本题需要如下关于定积分的知识:

  1. 定积分的几何意义:
    曲边梯形的代数和.
  2. 定积分的基本性质:
    定积分的线性性:

$\int_{a}^{b}$ $[$ $k_{1}$ $f_{1}(x)$ $+$ $k_{2}$ $f_{2}(x)$ $]$ $dx$ $=$ $k_{1}$ $\int_{a}^{b}$ $f_{1}(x)$ $dx$ $+$ $k_{2}$ $\int_{a}^{b}$ $f_{2}(x)$ $dx$.

定积分积分区间的可加性:
$\int_{a}^{b}$ $f(x)$ $dx$ $=$ $\int_{a}^{c}$ $f(x)$ $dx$ $+$ $\int_{c}^{b}$ $f(x)$ $dx$.

根据上面的知识,我们可以做如下推理。

如果我们约定,使用 $v(t)$ 表示速度,使用 $s(t)$ 表示路程,那么在从 $0$ 到 $t$ 这个时间段内,可以写出如下定积分表达式:

$s(t)$ $=$ $\int_{0}^{t}$ $v(t)$ $dx$.

因此,当乙在 $t_{0}$ 时刻追上甲时,甲走过的路程为:

$s_{1}(t)$ $=$ $\int_{0}^{t_{0}}$ $v_{1}(t)$.

乙走过的路程为:

$s_{2}(t)$ $=$ $\int_{0}^{t_{0}}$ $v_{2}(t)$.

$s_{2}(t)$

和 $s_{1}(t)$ 的关系为:

$s_{2}(t)$ $-$ $10$ $=$ $s_{1}(t)$.

于是有:

$s_{2}(t)$ $-$ $s_{1}(t)$ $=$ $\int_{0}^{t_{0}}$ $v_{2}(t)$ $-$ $\int_{0}^{t_{0}}$ $v_{1}(t)$ $=$ $\int_{0}^{t_{0}}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $=$ $10$.

由于在从 $0$ 到 $10$ 秒的时间段内,$v_{2}$ 始终大于 $v_{1}$, 因此,乙超过甲的时间 $t_{0}$ 一定大于 $10$, 于是有:

$\int_{0}^{10}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $+$ $\int_{10}^{t_{0}}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $=$ $10$.

又由于,从题中给出的图像我们可以看出:

$\int_{0}^{10}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $=$ $10$.

因此有:

$\int_{10}^{t_{0}}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $=$ $20$. (1)

根据题中图像可知,在第 $10$ 秒到第 $25$ 秒这段时间里,图像中对应的阴影部分的面积为 $20$, 所以当 $t_{0}$ $=$ $25$ 时, $(1) $ 式成立。

综上可知,本题的正确选项是:$C$.

EOF

2017 年研究生入学考试数学一填空题第 1 题解析(两种方法)

一、题目

已知函数 $f(x)$ $=$ $\frac{1}{1+x^{2}}$, 则 $f^{(3)}(0)$ $=$

二、解析

方法一

本题可以借助函数奇偶性的相关性质解出。

由于:

$f(x)$ $=$ $\frac{1}{1+x^{2}}$

$f(x)$ $=$ $\frac{1}{1+x^{2}}$

$f(-x)$ $=$ $\frac{1}{1+(-x)^{2}}$ $=$ $\frac{1}{1+x^{2}}$

因此:

$f(x)$ $=$ $f(-x)$

于是,我们知道,函数 $f(x)$ 是一个偶函数。

接下来,根据“偶函数的导数是奇函数,奇函数的导数是偶函数”的规律,我们知道,函数 $f^{(3)}(x)$ 是一个奇函数。

又由于,如果一个奇函数 $g(x)$ 在原点处$($ $x$ $=$ $0$ $)$有定义,则 $g(x)$ $=$ $0$, 因此有:

$f^{(3)}(0)$ $=$ $0$

综上可知,本题的答案就是:$0$.

方法二

本题也可以借助泰勒级数计算。

本题要求解的是在 $x$ $=$ $0$ 时,$f(x)$ 的三次导函数的函数值。我们知道,麦克劳林级数就是函数在 $x$ $=$ $0$ 处的泰勒级数,是泰勒级数的一个特例。于是,这里我们可以使用麦克劳林级数对原式进行级数展开。

麦克劳林级数中有一个关于几何级数的公式,如下:

$\frac{1}{1-x}$ $=$ $\sum_{0}^{\infty}$ $x^{n}$, $|x|$ $<$ $1$

当我们把上述公式中的 $x$ 替换成 $-x^{2}$ 后,$f(x)$ 就可以使用上述几何级数的公式表达,如下:

$f(x)$ $=$ $\frac{1}{1+x^{2}}$ $=$ $\frac{1}{1-(-x^{2})}$ $=$ $\sum_{0}^{\infty}$ $(-x^{2})^{n}$ $=$ $\sum_{0}^{\infty}$ $(-1)^{n}$ $x^{2n}$

之后,对 $f(x)$ 求导:

$f'(x)$ $=$ $\sum_{0}^{\infty}$ $(-1)^{n}$ $\cdot$ $2n$ $\cdot$ $x^{2n-1}$

$f”(x)$ $=$ $\sum_{0}^{\infty}$ $(-1)^{n}$ $\cdot$ $2n$ $\cdot$ $(2n-1)$ $\cdot$ $x^{2n-2}$

$f”'(x)$ $=$ $\sum_{0}^{\infty}$ $(-1)^{n}$ $\cdot$ $2n$ $\cdot$ $(2n-1)$ $\cdot$ $(2n-2)$ $\cdot$ $x^{2n-3}$

于是,$f”'(0)=0$.

综上可知,本题的答案就是: $0$.

EOF

2017 年研究生入学考试数学一选择题第 2 题解析

一、题目

若函数 $f(x)$ 可导,且 $f(x)$ $f'(x)$ $>$ $0$, 则()

( A ) $f(1)$ $>$ $f(-1)$

( B ) $f(1)$ $<$ $f(-1)$

( C ) $|f(1)|$ $>$ $|f(-1)|$

( D ) $|f(1)|$ $<$ $|f(-1)|$

二、解析

观察题目我们可以发现,$f(x)$ $f'(x)$ 和下面这个这个公式很像:

$[f(x)$ $\cdot$ $g(x)]’$ $=$ $f'(x)$ $g(x)$ $+$ $f(x)$ $g'(x)$

如果我们令 $g(x)$ $=$ $f(x)$, 则有:

$f'(x)g(x)$ $+$ $f(x)g'(x)$ $=$ $f'(x)f(x)$ $+$ $f(x)f'(x)$ $=$ $f(x)f'(x)$ $+$ $f(x)f'(x)$ $=$ $2f(x)f'(x)$

进一步,我们可以令 $F(x)$ $=$ $f^{2}(x)$, 则有:

$F'(x)$ $=$ $2$ $f(x)f'(x)$

由题可知,$f(x)f'(x)$ $>$ $0$, 于是有 $F'(x)$ $>$ $0$, 即 $F(x)$ 是一个单调递增的函数,由此可得:

$F(1)$ $-$ $F(-1)$ $>$ $0$

即:

$f^{2}(1)$ $-$ $f^{2}(-1)$ $>$ $0$ $\Rightarrow$ $f^{2}(1)$ $>$ $f^{2}(-1)$ $\Rightarrow$ $|f(1)|$ $>$ $|f(-1)|$

综上可知,正确答案为:$C$.

EOF

2017 年研究生入学考试数学一选择题第 1 题解析

一、题目

若函数

$f(x)$ $=$ $\left\{\begin{matrix} \frac{1-\cos\sqrt{x}}{ax}, x > 0 \\ b, x\leqslant 0 \end{matrix}\right.$

在 $x$ $=$ $0$ 处连续,则()

( A ) $ab$ $=$ $\frac{1}{2}$

( B ) $ab$ $=$ $-$ $\frac{1}{2}$

( C ) $ab$ $=$ $0$

( D ) $ab$ $=$ $2$

二、解析

这道题可以根据函数连续的定义解出。

函数 $f(x)$ 在某一点 $x_{0}$ 处连续的定义如下:

$\lim_{x \rightarrow x_{0^{-}}}$ $=$ $\lim_{x \rightarrow x_{0^{+}}}$ $=$ $f(x_{0})$

因此,若函数 $f(x)$ 在 $x$ $=$ $0$ 处连续,则根据定义的话,我们需要证明:

$\lim_{x \rightarrow 0^{-}}$ $=$ $\lim_{x \rightarrow 0^{+}}$ $=$ $f(0)$

观察题目可知,这是一个分段函数,且当 $x$ $\in$ $(- \infty, 0]$ 时,$f(x)$ $=$ $b$. 于是,当 $x$ 从左边趋近于 $0$ 时,$f(0^{-})$ $=$ $b$.

当 $x$ 从右边趋近于 $0$ 时,适用的取值范围为 $x$ $>$ $0$, 而对应的函数值为:

$\lim_{x \rightarrow 0^{+}}$ $f(x)$ $=$ $\lim_{x \rightarrow 0^{+}}$ $\frac{1-\cos\sqrt{x}}{ax}$

根据如下的等价无穷小原则:

$1$ $-$ $\cos x$ $\sim$ $\frac{1}{2}x^{2}$

于是有:

原式 $=$ $\lim_{x \rightarrow 0^{+}}$ $\frac{\frac{1}{2}(\sqrt{x})^{2}}{ax}$ $=$ $\frac{1}{2a}$

为了满足上面提到的函数在一点处连续的定义,需要有:

$\frac{1}{2a}$ $=$ $b$

化简形式得:

$ab$ $=$ $\frac{1}{2}$

由此可知,选 $A$.

EOF

使用定义判断函数的奇偶性

一、题目

判断函数 $f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 的奇偶性。

二、解析

本题用到的知识点

$\log_{a}(MN)$ $=$ $\log_{a}M$ $+$ $\log_{a}N$

在 MATLAB (下面的代码在 MATLAB 9.1.0.441655 (R2016b) 中测试通过) 中输入如下代码:

x=0:0.01:10;
semilogy(x,log(x))

可以绘制出 $y$ $=$ $\ln(x)$ 的图像:

图 1

有图像可以看到,自然对数 $\ln(x)$ 只在 $(0,+\infty)$ 的区间里有定义,不符合对数函数或者偶数函数对于“定义域 $X$ 关于原点对称”的要求。不过题目中的函数可以看作是一个符合函数,因此,我们还需要结合 $g(x)$ $=$ $x$ $+$ $\sqrt{1+x^{2}}$ 的定义域来确定 $f(x)$ 的定义域。

因为:

$\sqrt{1+x^{2}}$ $>$ $\sqrt{x^{2}}$ $>$ $|x|$ $>$ $0$.

则:

当 $x$ $\in$ $(-\infty,+\infty)$ 时 $x$ $+$ $\sqrt{1+x^{2}}$ $>$ $0$ 满足自然对数函数 $\ln(x)$ 对定义域的要求,而且,当 $x$ $=$ $0$ 时,$f(x)$ $=$ $\ln(1)$ $=$ $0$ , 也满足奇函数“当 $f(x)$ 在原点处有定义时,$f(0)$ $=$ $0$”的要求。

到这里,定义域的问题解决了,下面要解决的是函数是关于 $y$ 轴对称,还是关于原点对称的问题。

由于:

$f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$

$f(-x)$ $=$ $\ln(-x+\sqrt{1+x^{2}})$

则:

$f(x)$ $+$ $f(-x)$ $=$ $\ln(\sqrt{1+x^{2}}+x)$ $+$ $\ln(\sqrt{1+x^{2}}-x)$ $=$ $\ln[(\sqrt{1+x^{2}}+x)(\sqrt{1+x^{2}}-x)]$ $=$ $\ln(1+x^{2}-x^{2})$ $=$ $\ln(1)$ $=$ $0$

上面的运算结果符合奇函数的定义,因此,$f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 是一个奇函数。

此外,使用 WolframAlpha 画出的函数 $f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 的图像如下:

图 2.

由图像我们也可以看出这是一个奇函数。

EOF

1998 年研究生入学考试数学二填空题第 1 题解析(三种方法)

一、题目

$\lim_{x \to 0}$ $\frac{\sqrt{1+x}+\sqrt{1-x}-2}{x^{2}}$ $=$

解法一

使用四则运算将原式化简,之后使用等价无穷小替换求出结果。

$\lim_{x \to 0}$ $\frac{\sqrt{1+x}+\sqrt{1-x}-2}{x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{(\sqrt{1+x}+\sqrt{1-x}-2)(\sqrt{1+x}+\sqrt{1-x}+2)}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{(\sqrt{1+x}+\sqrt{1-x})^{2}-4}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{1+x+1-x+2\sqrt{1+x}\sqrt{1-x}-4}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{2\sqrt{1+x}\sqrt{1-x}-2}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$

由于当 $x$ $\rightarrow$ $0$ 时,$(\sqrt{1+x}$ $+$ $\sqrt{1-x})$ $\rightarrow$ $2$, 因此有:

$\lim_{x \to 0}$ $\frac{2\sqrt{1+x}\sqrt{1-x}-2}{4x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{2(\sqrt{1-x^{2}}-1)}{4x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x^{2}}-1}{2x^{2}}$

根据等价无穷小的如下替换原则:

$(1+x)^{\mu }$ $-$ $1$ $\backsim$ $\mu$ $x$

详细内容可以参考荒原之梦网(zhaokaifeng.com)的这篇文章:高等数学中常用的等价无穷小

可知:

$\sqrt{1-x^{2}}$ $-$ $1$ $\backsim$ $-$ $\frac{1}{2}x^{2}$, 因此有:

$\lim_{x \to 0}$ $\frac{-\frac{1}{2}x^{2}}{2x^{2}}$ $=$ $-$ $\frac{1}{4}$

解法二

观察题目中的式子可以发现,当 $x$ $\rightarrow$ $0$ 时,满足以下条件:

(1) $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$ $\rightarrow$ $0$

(2) $x^{2}$ $\rightarrow$ $0$ 且 $x^{2}$ $\neq$ $0$

(3) $y$ $=$ $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$ 和 $y$ $=$ $x^{2}$ 在 $0$

附近两者都可导(在 $0$ 附近,导数存在且连续,故可导)。

综上可知,此处可以使用 $\frac{0}{0}$ 型的洛必达法则,即可以对分子和分母分别求导后再求极限来确定未定式的值。

求导过程如下:

原式 $=$ $\lim_{x \to 0}$ $\frac{\frac{1}{2\sqrt{1+x}} – \frac{1}{2 \sqrt{1-x}}}{2x}$ $=$ $\lim_{x \to 0}$ $\frac{\frac{1}{\sqrt{1+x}} – \frac{1}{\sqrt{1-x}}}{4x}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x}-\sqrt{1+x}}{4x(\sqrt{1+x} \times \sqrt{1-x})}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x} – \sqrt{1+x}}{4x \sqrt{1-x^{2}}}$

因为,当 $x$ $\rightarrow$ $0$ 时,$\sqrt{1-x^{2}}$ $\rightarrow$ $1$, 所以有:

$\lim_{x \to 0}$ $\frac{\sqrt{1-x}-\sqrt{1+x}}{4x}$

上面的计算过程依次是“求导 / 化简 / 化简 / 化简 / 化简”。下面开始正式使用 $\frac{0}{0}$ 型的洛必达法则进行计算:

$\overset{\frac{0}{0}}{\rightarrow}$ $\lim_{x \to 0}$ $=$ $-$ $\frac{\frac{1}{2\sqrt{1-x}} – \frac{1}{2\sqrt{1+x}}}{4}$

经过上面的求导,我们发现,当 $x$ $\rightarrow$ $0$ 时,$-$ $\frac{1}{2\sqrt{1-x}}$ $\rightarrow$ $-$ $\frac{1}{2}$, $-$ $\frac{1}{2\sqrt{1+x}}$ $\rightarrow$ $0$, 因此有:

原式 $=$ $\frac{-\frac{1}{2} – \frac{1}{2}}{4}$ $=$ $\frac{-(\frac{1}{2}+\frac{1}{2})}{4}$ $=$ $-$ $\frac{1}{4}$

在使用洛必达法则解决该问题的时候,进行了两次求导。其实,只要满足以下三个条件,则在使用洛必达法则的过程中可以进行任意次求导,但需要注意的是,每一次求导之前必须确保式子仍然满足如下三个条件,否则不能使用洛必达法则:

设:$y$ $=$ $\frac{f(x)}{g(x)}$, 则需满足:

(01) $x$ $\rightarrow$ $x_{0}$ 或 $x$ $\rightarrow$ $\infty$ 时,$f(x)$ 和 $g(x)$ 均趋于 $0$ 或者趋于 $\infty$;

(02) $f(x)$ 和 $g(x)$ 在 $x_{0}$ 的去心邻域可导且 ${g}'(x)$ $\neq$ $0$;

(03) $\frac{{f}'(x)}{{g}'(x)}$ 的极限存在或者为无穷大。

总结来说,洛必达法则的使用方法如下:

$\lim_{x \to x_{0}}$ $\frac{f(x)}{g(x)}$ $=$ $\lim_{x \to x_{0}}$ $\frac{{f}'(x)}{{g}'(x)}$

解法三

观察题目中的式子我们发现,可以使用麦克劳林展开式的 $(1+x)^{m}$ 的形式和皮亚诺余项对该题目进行计算,公式如下:

$(1+x)^{m}$ $=$ $1$ $+$ $mx$ $+$ $\frac{m(m-1)}{2!}$ $x^{2}$ $+$ $o(x^{2})$

代入公式可得:

$\sqrt{1+x}$ $=$ $(1+x)^{\frac{1}{2}}$ $=$ $1$ $+$ $\frac{1}{2}$ $x$ $+$ $\frac{\frac{1}{2} \times (\frac{1}{2}-1)}{2!}$ $x^{2}$ $+$ $o(x^{2}$ $)$ $=$ $1$ $+$ $\frac{1}{2}$ $x$ $-$ $\frac{1}{8}$ $x^{2}$ $+$ $o(x^{2})$

$\sqrt{1-x}$ $=$ $(1-x)^{\frac{1}{2}}$ $=$ $1$ $-$ $\frac{1}{2}$ $x$ $+$ $\frac{\frac{1}{2} \times (\frac{1}{2}-1)}{2!}$ $x^{2}$ $+$ $o(x^{2})$ $=$ $1$ $-$ $\frac{1}{2}$ $x$ $-$ $\frac{1}{8}$ $x^{2}$ $+$ $o(x^{2})$

于是有:

原式 $=$ $\lim_{x \to 0}$ $\frac{1+\frac{1}{2} x – \frac{1}{8} x^{2} + 1 – \frac{1}{2} x – \frac{1}{8} x^{2} + o(x^{2})-2}{x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{-\frac{1}{4} x^{2} + o(x^{2})}{x^{2}}$ $=$ $\lim_{x \to 0}$ $-$ $\frac{1}{4}$ $+$ $\frac{0(x^{2})}{x^{2}}$ $=$ $-$ $\frac{1}{4}$.

EOF

错题总结:明确求导过程中的自变量很关键

一、例题:对下面的函数求导

$f(x)$ $=$ $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$

二、错误的求导过程

${f}'(x)$ $=$ ${(\sqrt{1 + x})}’$ $+$ ${(\sqrt{1 – x})}’$ $+$ ${2}’$ $=$ ${((1 + x)^{\frac{1}{2}})}’$ $+$ ${((1 – x)^{\frac{1}{2}})}’$ $=$ $\frac{1}{2}$ $\frac{1}{\sqrt{1+x}}$ $+$ $\frac{1}{2}$ $\frac{1}{\sqrt{1-x}}$ $=$ $\frac{1}{2 \sqrt{1+x}}$ $+$ $\frac{1}{2 \sqrt{1-x}}$

上面这个计算过程是错的,错误的原因是在计算 $\sqrt{1+x}$ 的导数时把 $1+x$ 视作了自变量,也就是说把 $1$ $+$ $x$ 视作了求导对象;而在对 $\sqrt{1-x}$ 求导时,又把 $1$ $-$ $x$ 看作了求导自变量。

很显然,一个二维函数中不可能有两个不同的自变量,而且根据约定可知,当式子中出现 $f(x)$ 或者 $lim_{x \to 0}$ 时,就表明这个式子中的自变量是 $x$ 且求导也要对 $x$ 求导。

三、正确的求导过程

这里我们可以使用复合函数求导的链式法则计算本例题,复合函数的链式求导法则如下:

设 $y$ $=$ $f(u)$, $u$ $=$ $\mu(x)$, 如果 $\mu(x)$ 在 $x$ 处可导,$f(x)$ 在对应点 $u$ 处可导,则复合函数 $y$ $=$ $f[\mu(x)]$ 在 $x$ 处可导,且有:

$\frac{dy}{dx}$ $=$ $\frac{dy}{du}$ $\frac{du}{dx}$ $=$ ${f}'[\mu(x)]{\mu}'(x)$

于是,对于例题的正确求导过程如下:

${f}'(x)$ $=$ ${(\sqrt{1 + x})}’$ $+$ ${(\sqrt{1 – x})}’$ $+$ ${2}’$ $=$ ${((1 + x)^{\frac{1}{2}})}’$ $+$ ${((1 – x)^{\frac{1}{2}})}’$ $=$ $\frac{1}{2}(1 + x)^{-\frac{1}{2}}$ $+$ $\frac{1}{2}$ $(1 – x)^{-\frac{1}{2}}$ $=$ $\frac{1}{2}$ $(1 + x)^{-\frac{1}{2}} \times {(x)}’$ $+$ $\frac{1}{2}$ $(1 – x)^{-\frac{1}{2}} \times {(-x)}’$ $=$ $\frac{1}{2\sqrt{1+x}} – \frac{1}{2 \sqrt{1-x}}$

高等数学中常用的等价无穷小

当 $x\rightarrow0$ 时

(02) $ \tan x \backsim x $

(01) $ \sin x \backsim x $

(03) $ \arcsin x \backsim x $

(04) $ \arctan x \backsim x $

(05) $ \ln(1+x) \backsim x $

(06) $ e^{x} -1 \backsim x $

(07) $ 1-\cos x \backsim \frac{1}{2}x^{2} $

(08) $ x – \ln(1 + x) \backsim \frac{1}{2}x^{2} $

(09) $ \tan x – \sin x \backsim \frac{1}{2}x^{3} $

(10) $ \arcsin x – \arctan x \backsim \frac{1}{2}x^{3} $

(11) $ \tan x – x \backsim \frac{1}{3}x^{3} $

(12) $ x – \arctan x \backsim \frac{1}{3}x^{3} $

(13) $ x – \sin x \backsim \frac{1}{6}x^{3} $

(14) $ (1+x)^{a}-1 \backsim ax $

(15) $ a^{x}-1 \backsim \ln a\times x $

依次点击下方按钮,深入学习高等数学中的常用等价无穷小: