2024年考研数二第04题解析:用特例法求解判断数列的敛散性

一、题目题目 - 荒原之梦

已知数列 $\left\{a_n\right\}\left(a_n \neq 0\right)$, 若 $\left\{a_n\right\}$ 发散, 则 ( )

(A) $\left\{a_n+\frac{1}{a_n}\right\}$ 发散

(B) $\left\{a_n-\frac{1}{a_n}\right\}$ 发散

(C) $\left\{e^{a_n}+\frac{1}{e^{a_n}}\right\}$ 发散

(D) $\left\{e^{a_n}-\frac{1}{e^{a_n}}\right\}$ 发散

难度评级:

继续阅读“2024年考研数二第04题解析:用特例法求解判断数列的敛散性”

考研高等数学思维导图:05-导数的应用 [GS-20250201]

涉及的知识点

01. 函数的极值
02. 极值存在的必要条件
03. 极值存在的充分条件
04. 极值存在的充要条件
05. 求函数最值得方法

06. 凹凸性得判定
07. 常见得特征点
08. 渐近线
09. 曲率、曲率半径、曲率圆

继续阅读“考研高等数学思维导图:05-导数的应用 [GS-20250201]”

考研线性代数思维导图:05-计算抽象型行列式的常用公式 [XD-20250201]

涉及的知识点

01. 计算抽象型行列式的常用公式
02. 抽象型行列式的补充特例

继续阅读“考研线性代数思维导图:05-计算抽象型行列式的常用公式 [XD-20250201]”

2023年考研数一第07题解析:一个向量能被其余向量表示就意味着这些向量可以组成一个线性方程组

一、题目题目 - 荒原之梦

已知向量 $\alpha_{1} = \left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, $\alpha_{2}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$, $\beta_{1}=\left(\begin{array}{l}2 \\ 5 \\ 9\end{array}\right)$, $\beta_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. 若 $\gamma$ 既可由 $\alpha_{1}$, $\alpha_{2}$ 表示, 也可由
$\beta_{1}$, $\beta_{2}$ 表示, 则 $\gamma$ 为 ($\quad$)

(A) $k\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right), k \in R$

(B) $k\left(\begin{array}{c}3 \\ 5 \\ 10\end{array}\right), k \in R$

(C) $k\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right), k \in R$

(D) $k\left(\begin{array}{l}1 \\ 5 \\ 8\end{array}\right), k \in R$

难度评级:

继续阅读“2023年考研数一第07题解析:一个向量能被其余向量表示就意味着这些向量可以组成一个线性方程组”

考研线性代数思维导图:04-计算具体型行列式的常用公式 [XD-20250201]

涉及的知识点

01. 上/下三角形行列式对角线元素的性质
02. 反上/下三角形行列式对角线元素的性质
03. 拉普拉斯展开式
04. 范德蒙行列式

继续阅读“考研线性代数思维导图:04-计算具体型行列式的常用公式 [XD-20250201]”

计算复杂但有规律的式子,要学会化繁为简,使计算过程充分清晰

一、题目题目 - 荒原之梦

计算下面这个式子的值:

$$
\begin{aligned}
I \\ \\
& = \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{-4}^{0} – \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{0}^{1} + \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{1}^{4}
\end{aligned}
$$

难度评级:

继续阅读“计算复杂但有规律的式子,要学会化繁为简,使计算过程充分清晰”

考研高等数学思维导图:03-导数和微分 [GS-20250201]

涉及的知识点

01. 一点处导数的定义
02. 左右导数
03. 导数的几何意义
04. 微分的定义
05. 导数的运算法则
06. 基本求导公式
07. 莱布尼兹公式

08. 可微的充要条件
09. 可导与连续的关系
10. 复合函数求导
11. 反函数求导
12. 隐函数求导
13. 变量交替求导
14. 参数方程求导

继续阅读“考研高等数学思维导图:03-导数和微分 [GS-20250201]”

2024年考研数二第03题解析:奇奇复合才为奇,有偶复合必为偶

一、题目题目 - 荒原之梦

设函数 $f(x)$ $=$ $\int_{0}^{\sin x} \sin t^{3} \mathrm{~d} t$, $g(x)=\int_{0}^{x} f(t) \mathrm{~d} t$, 则 ($\quad$)

(A) $f(x)$ 是奇函数, $g(x)$ 是奇函数
(B) $f(x)$ 是奇函数, $g(x)$ 是偶函数
(C) $f(x)$ 是偶函数, $g(x)$ 是偶函数
(D) $f(x)$ 是偶函数, $g(x)$ 是奇函数

难度评级:

继续阅读“2024年考研数二第03题解析:奇奇复合才为奇,有偶复合必为偶”

考研线性代数思维导图:03-行列式按行(列)展开定理 [XD-20250201]

涉及的知识点

01. 用代数余子式求行列式的值
02. 代数余子式的“错位得零”性质

继续阅读“考研线性代数思维导图:03-行列式按行(列)展开定理 [XD-20250201]”

考研高等数学思维导图:02-连续性与间断点 [GS-20250201]

涉及的知识点

01. 函数在一点处连续的定义
02. 第一类间断点
03. 第二类间断点
04. 闭区间上连续函数的定义

继续阅读“考研高等数学思维导图:02-连续性与间断点 [GS-20250201]”

考研线性代数思维导图:02-余子式和代数余子式 [XD-20250201]

涉及的知识点

01. 余子式的定义
02. 代数余子式的定义
03. 代数余子式与元素位置无关定理

继续阅读“考研线性代数思维导图:02-余子式和代数余子式 [XD-20250201]”

考研高等数学思维导图:01-极限 [GS-20250201]

涉及的知识点

01. 极限存在的充要条件
02. 极限存在的准则
03. 两类主要极限
04. $e$ 抬起
05. 极限的重要性质
06. 极限的四则运算法则

07. 无穷小量的运算性质
08. 极限与无穷小的关系
09. 无穷小的比较
10. 常用的等价无穷小
11. 几个重要极限
12. 洛必达法则

继续阅读“考研高等数学思维导图:01-极限 [GS-20250201]”

考研线性代数思维导图:01-行列式的性质 [XD-20250201]

涉及的知识点

01. 转置行列式
02. 行列式外的数乘
03. 行列式的拆分
04. 含有全零行或列的行列式
05. 含有相等行或列的行列式

06. 行或列成比例的行列式
07. 行列式内的数乘
08. 交换行列式的两行或两列
09. 行列式的本质

继续阅读“考研线性代数思维导图:01-行列式的性质 [XD-20250201]”

考研高等数学思维导图:00-常用的中学公式 [GS-20250201]

涉及的知识点

01. 常见函数的图形
02. 因式分解
03. 常见不等式
04. 对数运算
05. 数列
06. 排列组合
07. 一元二次方程

08. 三角函数
09. 函数与反函数
10. 常用数值
11. 偶函数和奇函数
12. 虚数
13. 充分条件和必要条件
14. 补充内容

继续阅读“考研高等数学思维导图:00-常用的中学公式 [GS-20250201]”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

意见反馈 | 内容纠错 | 微信 | QQ | 公众号 | 知乎 | 微博 | 博客园 |CSDN | B 站 | 电子邮件
豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress