2018 年研究生入学考试数学一选择题第 4 题解析

题目

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{(1+x)^{2}}{1+x^{2}}dx,N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{1+x}{e^{x}},K=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1+\sqrt{\cos x})dx,则 ( )

( A ) M>N>K

( B ) M>K>N

( C ) K>M>N

( D ) K>N>M

解析

在解答题目时,能化简的要先化简,能计算出具体数值的要先计算出具体数值。
首先观察本题,发现 M 对应的式子应该是可以化简或者通过积分计算出具体的数值。于是:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{(1+x)^{2}}{1+x^{2}}dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{1+x^{2}+2x}{1+x^{2}}dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[\frac{1+x^{2}}{1+x^{2}}+\frac{2x}{1+x^{2}}]dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[1+\frac{2x}{1+x^{2}}]dx

计算到上面这一步之后,我们有两种方法可以继续上面的计算,一种方法是利用积分函数在对称区间上的性质,另一种是利用基本积分公式直接计算。

下面分别使用上述提到的两种方法展开计算。

方法一:利用积分函数在对称区间上的性质

这里说的“对称区间”指的是关于原点对称的区间,观察题目可知,题目中的积分函数的上限和下限组成的区间 [-\frac{\pi}{2},\frac{\pi}{2}] 正好是关于原点对称的。

根据积分的几何意义,我们知道,奇函数在关于原点对称的对称区间上的积分是等于 0 的。

y=x,x \in (-\infty,+\infty) 就是一个典型的奇函数,如图 1:

Figure 1. 奇函数图像,使用 www.desmos.com 制作

因此,接下来,我们如果能证明一个函数是奇函数,就可以证明这个函数在关于原点对称的区间上的积分是 0.

于是,令:

f(x)=\frac{2x}{1+x^{2}}

则:

\frac{2(-x)}{1+(-x)^{2}} = -\frac{2x}{1+x^{2}} \Rightarrow f(-x) = -f(x).

因此 f(x)=\frac{2x}{1+x^{2}} 是一个奇函数,于是:

\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{2x}{1+x^{2}}dx=0.

即:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1 d x.

方法二:利用基本积分公式直接计算

由前面的计算,我们已知,M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{2x}{1+x^{2}}dx, 于是,根据积分公式:

d(x^{\mu})=\mu x^{\mu-1}dx.

我们可以令 2xdx=d(1+x^{2}).

于是:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1+\frac{d(1+x^{2})}{1+x^{2}}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1+\frac{1}{1+x^{2}}d(1+x^{2}).

接下来,根据基本积分公式:

\int \frac{1}{x}dx=\ln |x| + c.

我们有:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1+\frac{1}{1+x^{2}}d(1+x^{2})=x+\ln |1+x^{2}| + c |_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{\pi}{2}+|\ln[1+(\frac{\pi}{2})^{2}]|+c-(-\frac{\pi}{2})-|\ln[1+(-\frac{\pi}{2})^{2}]|-c=\frac{\pi}{2}+\frac{\pi}{2}=\pi.

又因为,M 的积分上限 \frac{\pi}{2} 减去 M 的积分下限 -\frac{\pi}{2} 也等于 \pi.

根据定积分的基本性质:

\int_{a}^{b}1dx=b-a.

我们知道:

M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1dx.

补充:

如果是计算 \int \frac{2x}{1-x^{2}}dx, 则我们至少有以下两种计算方法:

\int \frac{2x}{1-x^{2}}dx=-\int \frac{1}{1-x^{2}}=-\ln |1-x^{2}| +c;

或者:

\int \frac{2x}{1-x^{2}}dx=\int(\frac{1}{1-x}-\frac{1}{1+x})dx = -\ln|x-1|-\ln|x+1|+c=-\ln|x^{2}-1|+c.

至此,我们分别使用两种方法完成了对 M 的化简计算。

根据定积分的比较定理:

设 f(x) \leqslant g(x),x \in [a,b], 则 \int_{a}^{b}f(x)dx \leqslant \int_{a}^{b}g(x)dx.

观察题目可知,题目中给出的三个定积分 M,N,K 的上限和下限都是一样的,因此,我们可以使用上述比较定理比较他们的大小。

由于在 M,N,K 中,我们目前已知的只有 M 的数值,因此接下来我们先比较 NK 中的积分函数与 1 的大小关系。

首先来判断 N 的积分函数和 1 的大小关系。

x=0 时,1+x=e^{x}=1;

x<0 时,e^{x} 的减小速度小于 1+x 的减小速度;

x>0 时,e^{x} 的增长速度大于 1+x 的增长速度。

也就是说,在整个定义域内,y=e^{x} 的函数图像始终在 y=1+x 的上方或者和 y=1+x 重合,他们二者的图像如图 2:

Figure 2. 两个函数的对比图像,使用 www.desmos.com 制作

所以 \frac{1+x}{e^{x}} \leqslant 1,x \in [-\frac{\pi}{2},\frac{\pi}{2}].
再来判断 K 的积分函数和 1 的大小关系。

我们知道,当 x \in [-\frac{\pi}{2},\frac{\pi}{2}] 上时,y=\cos x \geqslant 0 的,如图 3:

Figure 3. 余弦函数的图像,使用 www.desmos.com 制作

于是 1+\sqrt{\cos x} \geqslant 1.

综上可知:

K \geqslant M \geqslant N, 正确选项是:C

EOF

Tumblr 被 WordPress.com 母公司 Automattic 以 300 万美元收购

2019 年 08 月 13 日,WordPress.com 的母公司 Automattic 在其官方推特上宣布 Tumblr 已经加入 Automattic:

Figure 1. from twitter.com/automattic

根据有关消息,这次收购的价格是 300 万美元。以下是在此之前 Tumblr 的部分发展历程:

2007 年 02 月,Tumblr 正式上线;

2016 年,Tumblr 的月访问量达到 5.5 亿;

2013 年,Tumblr 被雅虎以 11 亿美元收购;

2017 年,Tumblr 又被 Verizon 收购;

2018 年,Tumblr 开始限制站内的成人内容,此后网站访问量明显降低。

Tumblr 的创始人之一 Matt Mullenweg 在其位于 Tumblr 的博客上发文表示:

I look forward to working with everyone from Tumblr as we welcome them to Automattic, and I can’t wait for us to build great products together.

https://photomatt.tumblr.com/post/186964618222/automattic-tumblr

之后,他还在自己的个人网站 ma.tt 上发表了自己对个这个收购价格的看法:

First, they chose to find a new home for Tumblr instead of shutting it down. Second, they considered not just how much cash they would get on day one, but also — and especially — what would happen to the team afterward, and how the product and the team would be invested in going forward. Third, they thought about the sort of steward of the community the new owner would be. They didn’t have to do any of that, and I commend them for making all three points a priority.

https://ma.tt/2019/08/tumblr-the-day-after/

Automattic 旗下的 WordPress 和 Tumblr 都是博客平台,就我个人的感受而言,WordPress 是一个更侧重桌面端的博客平台,而 Tumblr 则是一个更侧重手机端的博客平台。因此,此次收购应该可以在未来起到优势互补的作用。

EOF

中国开源云联盟发布中国首个开源许可协议:木兰宽松许可证

2019 年 08 月 05 日,中国开源云联盟发布了“木兰宽松许可证 (MulanPSL)” 第一版。根据已知消息,这应该是中国首个开源许可协议。木兰宽松许可证包含中文和英文两个版本,这两个版本具备相同的法律效力。

继续阅读“中国开源云联盟发布中国首个开源许可协议:木兰宽松许可证”

2008 年研究生入学考试数学一选择题第 4 题解析

题目

设函数在 f(x)(- \infty, + \infty) 内单调有界,\{x_{n}\} 为数列,下列命题正确的是 ( )

( A ) 若 \{x_{n}\} 收敛,则 \{f(x_{n})\} 收敛.

( B ) 若 \{x_{n}\} 单调,则 \{f(x_{n})\} 收敛.

( C ) 若 \{f(x_{n})\} 收敛,则 \{x_{n}\} 收敛.

( D ) 若 \{f(x_{n})\} 单调,则 \{x_{n}\} 收敛.

解析

解答本题之前,我们需要清楚“极限”,“收敛”和“有界”三者之间的区别与联系。

当我们说“极限”时,我们通常说的是“函数极限”,当我们说“收敛”时,我们通常说的是“数列收敛”。说“数列收敛”就是说该数列存在极限。我们可以认为,“收敛”是用于描述离散数据的,“极限”是用于描述连续数据的。当我们在计算或者证明数列极限的时候,我们其实是将数列看作了“连续数据”来对待。

如果一个数列收敛,那么这个数列必然有界,但是如果一个数列有界却不一定收敛,例如下面这个数列有界,但不收敛:

\{1,-1,1,-1,1,-1\}.

对于函数也一样,例如 y=\sin x 是一个有界函数,但不收敛。

只有单调并且有界的数列才一定收敛(也意味着该数列一定有极限),这就是数列极限的“单调有界原理”。

注:当“单调有界原理”用在数列上时可以证明数列有界;当单调有界原理用在函数上时只能证明函数有确界,即有上确界或者下确界。

此外,本题还涉及复合函数,因此还必须清楚复合函数的几个性质:

  • 复合函数的单调性

单调性包含单调递增和单调递减。对于复合函数而言,如果外函数和内函数都是单调函数,则在定义域内,它们的复合函数也是单调函数。至于是单调增还是单调减,可以用“同增异减”来判定。

“同增异减”的含义就是,如果外层函数是增函数,则复合函数的增减性与内函数的增减性一致;

如果外层函数为减函数,则复合函数的增减性与内函数的增减性相反。

“同增异减”也可以理解成,如果复合前两个函数都为增函数或者都为减函数,则复合函数为增函数;如果复合前两个函数一个为增函数,一个为减函数,则复合函数为减函数。

注:无论是单增还是单减,只要内函数和外函数都是单调函数,则复合函数也一定是单调函数。

  • 复合函数的奇偶性

① 如果内函数为奇函数,则复合函数的奇偶性与外函数的奇偶性保持一致;

② 如果内函数为偶函数,则复合函数必为偶函数。

  • 复合函数的周期性

① 若内函数为周期函数,则复合函数一定也是周期函数;

② 若外函数为周期函数,则复合函数不一定为周期函数。

  • 复合函数的有界性

① 若内函数有界且外函数有界,则复合函数一定有界;

② 若内函数无界但外函数有界,则复合函数一定有界;

(上述两条总结一下就是,无论内函数是否有界,只要外函数有界,则复合函数一定有界。)

③ 若内函数有界但外函数无界或者内外函数都无界,这种情况下不能确定或者否定复合函数是有界还是无界,如果要确定或否定,还需要其他条件辅助分析。

有上面的阐述,我们可以发现,在判断复合函数的性质的时候,第一步要做的事情就是区分出内函数和外函数。本题在内外函数的区分上可能具有一定的迷惑性,我们不能认为在复合函数 “\{f(x_{n})\}” 中,”\{x_{n}\}” 是外函数而 “f(x)” 是内函数,这是错误的。符号 “\{” 和 “\}” 只是说明这是一个数列,而并不是一个运算符号,其意义是多个 “f(x_{n})” 的值组成的数列,因此外函数是 “f(x)“, 内函数是 “x_{n}.”

下面是针对每个选项的具体分析:

A 项:

\{x_{n}\} 收敛 → \{x_{n}\} 有界;

f(x) 有界 + \{x_{n}\} 有界 → \{f(x_{n})\} 有界;

但是数列有界不能直接推出数列收敛,必须是单调且有界的数列才能推出收敛的结论。

A 项错误。

B 项:

\{x_{n}\} 单调 + f(x_{n}) 单调 → \{f(x_{n})\} 单调;

f(x_{n}) 有界 → \{f(x_{n})\} 有界;

\{f(x_{n})\}单调有界 → \{f(x_{n})\} 收敛。

B 项正确。

C 项:

由复合函数收敛不能确定其内函数是否也收敛。

C 项错误。

D 项:

f(x_{n}) 有界 → \{f(x_{n})\} 有界;

\{f(x_{n})\}单调有界 → \{f(x_{n})\} 收敛;

但是 \{f(x_{n})\} 收敛推不出内函数 \{x_{n}\} 也收敛,和 C 项原因一致。

D 项错误。

综上可知,正确选项是:B

EOF