2016年考研数二第04题解析

题目

设函数 $f(x)$ 在 $(- \infty, + \infty)$ 内连续,其导函数的图形如图1 所示,则 $?$

$$
A. 函数 f(x) 有 2 个极值点,曲线 y=f(x) 有 2 个拐点
$$

$$
B. 函数 f(x) 有 2 个极值点,曲线 y=f(x) 有 3 个拐点
$$

$$
C. 函数 f(x) 有 3 个极值点,曲线 y=f(x) 有 1 个拐点
$$

$$
D. 函数 f(x) 有 3 个极值点,曲线 y=f(x) 有 2 个拐点
$$

继续阅读“2016年考研数二第04题解析”

2016年考研数二第02题解析

题目

已知函数 $f(x)=\left\{\begin{matrix}2(x-1),x < 1,\\ \ln x, x \geqslant 1,\end{matrix}\right.$ 则 $f(x)$ 的一个原函数是 $?$

$$
A. F(x)=\left\{\begin{matrix}(x-1)^{2},x < 1,\\ x(\ln x – 1), x \geqslant 1,\end{matrix}\right.$$

$$B. F(x)=\left\{\begin{matrix}(x-1)^{2},x < 1,\\ x(\ln x + 1) – 1, x \geqslant 1,\end{matrix}\right.$$

$$C. F(x)=\left\{\begin{matrix}(x-1)^{2},x < 1,\\ x(\ln x + 1) + 1, x \geqslant 1,\end{matrix}\right.$$

$$D. F(x)=\left\{\begin{matrix}(x-1)^{2},x < 1,\\ x(\ln x – 1) + 1, x \geqslant 1,\end{matrix}\right.$$

继续阅读“2016年考研数二第02题解析”

2016年考研数二第01题解析

题目

设 $\alpha_{1} = x(\cos \sqrt{x}-1)$, $\alpha_{2} = \sqrt{x}\ln(1+\sqrt[3]{x})$, $\alpha_{3} = \sqrt[3]{x+1}-1$.

当 $x \rightarrow 0^{+}$ 时,以上 $3$ 个无穷小量按照从低阶到高阶的排序是 $?$

$$A. \alpha_{1}, \alpha_{2}, \alpha_{3}$$

$$B. \alpha_{2}, \alpha_{3}, \alpha_{1}$$

$$C. \alpha_{2}, \alpha_{1}, \alpha_{3}$$

$$D. \alpha_{3}, \alpha_{2}, \alpha_{1}$$

继续阅读“2016年考研数二第01题解析”

2017年考研数二第06题解析

题目

甲乙两人赛跑,计时开始时,甲在乙前方 $10$(单位:$m$)处. 图 1 中,实线表示甲的速度曲线 $v=v_{1}(t)$ (单位 : m/s),虚线表示乙的速度曲线 $v=v_{2}(t)$ (单位 : m/s),三块阴影部分面积的数值依次为 $10$, $20$, $3$. 计时开始后乙追上甲的时刻记为 $t_{0}$ (单位 : $s$),则 $?$

A. $t_{0}=10.$

B. $15<t_{0}<20.$

C. $t_{0}=25.$

D. $t_{0}>25.$

图 1
继续阅读“2017年考研数二第06题解析”

2017年考研数二第03题解析

题目

设数列 $x_{n}$ 收敛,则 $?$

$$A. 当 \lim_{n \rightarrow \infty} \sin x_{n} = 0 时,\lim_{n \rightarrow \infty} x_{n} = 0$$

$$B. 当 \lim_{n \rightarrow \infty} (x_{n} + \sqrt{|x_{n}|}) = 0 时,\lim_{n \rightarrow \infty} = 0$$

$$C. 当\lim_{n \rightarrow \infty} (x_{n} + x_{n}^{2}) = 0 时,\lim_{n \rightarrow \infty} x_{n} =0$$

$$D. 当 \lim_{n \rightarrow \infty} (x_{n} + \sin x_{n}) = 0 时,\lim_{n \rightarrow \infty} x_{n} = 0$$

继续阅读“2017年考研数二第03题解析”