[高等数学]解析一道关于函数极限的概念考察题(001)

题目

下列命题中正确的是()

( A ) 若 \lim_{x \rightarrow x_{0}} f(x) \geqslant \lim_{x \rightarrow x_{0}}g(x), 则 \exists \varepsilon > 0, 当 0<|x-x_{0}|<\varepsilon 时,f(x) \geqslant g(x).

( B ) 若 \exists \varepsilon>0, 当 0<|x-x_{0}|< \varepsilon 时,f(x)>g(x), 且 \lim_{x \rightarrow x_{0}}f(x)=A_{0}, \lim_{x \rightarrow x_{0}}g(x)=B_{0}, 则 A_{0}>B_{0}.

( C ) 若 \exists \varepsilon>0, 当 0<|x-x_{0}|<\varepsilon 时,f(x)>g(x), 则 \lim_{x \rightarrow x_{0}}f(x) \geqslant \lim_{x \rightarrow x_{0}}g(x).

( D ) 若 \lim_{x \rightarrow x_{0}}f(x)>\lim_{x \rightarrow x_{0}}g(x), 则 \exists \varepsilon>0, 当 0<|x-x_{0}|<\varepsilon 时,f(x)>g(x).

解析

概念考察题是考研数学中一类比较难的题,这类题的难点在于除了紧抠概念之外,解答者没有多少可以自由发挥的空间。而且,概念考察题考察的都是概念的细微之处,一不留神就可能审错题。

从本题的四个选项可以看出,本题考查的着重点在函数极限这一部分。更细致的来看,本题考查了函数极限的定义中当 x \rightarrow x_{0} 时的极限的定义,如下:

已知 \lim_{x \rightarrow x_{0}}f(x)=A

任给 \varepsilon >0, 存在正数 \delta, 当 0<x-x_{0}<\delta 时,就有 |f(x)-A|<\varepsilon.

注:上面这个定义说的通俗一点就是,当 xx_{0} 足够接近的时候,f(x)f(x) 的极限 A 也足够接近。

本题还考察了函数极限的性质中的“保号性”,如下:

\lim f(x)=A>0, 则在极限管辖的范围内,f(x)>0(f(x)>\frac{A}{2}).

反之,f(x)>0\lim f(x)=A \Rightarrow A \geqslant 0.

注:当 x \rightarrow x_{0} 时,“极限管辖的范围”指的就是 x_{0} 的去心邻域;当 x \rightarrow \infty 时,“极限管辖的范围”指的就是无穷远处。

对于函数极限的性质中的保号性,我们需要明确以下几点:

  • 解答保号性问题的大前提是“涉及到的函数的极限均存在”,这也是解决所有涉及极限的问题的大前提:要研究和利用极限,则极限必须存在;
  • 保号性都是局部保号性,即只有在极限管辖的范围内才存在保号性;
  • 由极限大于 0 可以推出函数大于 0, 不能推出函数等于 0 或者函数小于 0. 由函数大于 0 可以推出极限大于 0 或者极限等于 0, 而且在不确定极限究竟是只大于 0 还是只小于 0 的情况下,要写成极限大于等于 0 的形式。

以下是对本题中每一个选项的分析。

A 选项

该选项给出了:

\lim_{x \rightarrow x_{0}} f(x) \geqslant \lim_{x \rightarrow x_{0}}g(x)

这说明 f(x)g(x) 的极限都存在(满足了研究极限问题的大前提,条件可用,可以继续接下来的思考步骤)且 f(x) 的极限大于等于 f(x) 的极限。

于是,我们有:

\lim_{x \rightarrow x_{0}}(f(x)-g(x)) \geqslant 0

接下来选项给出了:

\exists \varepsilon > 0, 当 0<|x-x_{0}|<\varepsilon

这说明我们是要在“函数极限的管辖范围内”讨论这个选项的说法,具备使用保号性的前提,条件可用,可以继续接下来的思考步骤。

该选项接下来指出,由上面的条件可以推出 f(x) \geqslant g(x).

这个结论是不对的。原因如下:

若函数 f(x) 的极限 A >0, 则可以推出函数 f(x)>0;

若函数 f(x) 的极限 A<0, 则可以推出函数 f(x)<0;

若函数 f(x) 的极限 A=0, 则不能确定函数 f(x) 是大于 0, 小于 0 还是等于 0. 原因是,如果 A=0 我们不知道函数 f(x) 是在大于 0 的方向上趋近于极限 A, 还是在小于 0 的方向上趋近于极限 A, 抑或 f(x)=0.

如图 1 所示,当函数的极限等于 0 时,函数可能是大于 0 的:

图 1. y=1/x 的局部图像,使用 www.desmos.com 生成

如图 2 所示,当函数的极限等于 0 时,函数也可能是小于 0 的:

图 2. y=1/(-x) 的局部图像,使用 www.desmos.com 生成

第三种情况,当函数的极限等于 0 时,函数可能也是等于 0 的,如图 3 所示:

图 3. y=0 的局部图像,使用 www.desmos.com 生成

因此,已知极限 \lim_{x \rightarrow x_{0}}[f(x)-g(x)]\geqslant0, 并不能推导出函数 F(x)=[f(x)-g(x)]\geqslant0.

综上可知,选项 A 是错误的。

B 选项

题目中给出了如下条件:

\exists \varepsilon>0, 当 0<|x-x_{0}|<\varepsilon

因此,本题符合函数极限保号性的使用条件,条件可用,可以继续接下来的思考步骤。

接着,该选项给出:

f(x)>g(x)

于是,当我们令 F(x)=f(x)-g(x) 时,可以得出如下结论:

F(x)>0

接着,该选项又给出:

\lim_{x \rightarrow x_{0}}f(x)=A_{0}, \lim_{x \rightarrow x_{0}}g(x)=B_{0}

这说明函数 f(x) 和函数 g(x) 都是存在极限的,符合我们研究函数极限问题的大前提,条件可用,可以继续接下来的思考步骤。

最后,该选项给出了他的结论:

A_{0}>B_{0}

有了这个结论,结合前面的条件,我们可以把该选项改写成如下形式:

已知函数 F(x) 存在极限,且函数 F(x)>0, 则 \lim_{x \rightarrow x_{0}}F(x)>0.

这个结论显然是错误的,因为已知函数大于 0 的时候,其极限是可能等于 0 的,例如对 A 选项的解析中给出的图 1, 函数 f(x)=\frac{1}{x} 始终是大于 0 的,但是其极限却是等于 0 的。

综上可知,选项 B 是错误的。

C 选项

该选项的错误比较明显,因为选项中没有指明函数 f(x) 和函数 g(x) 的极限存在,缺少了研究极限问题的大前提,那么,接下来的所有说明和结论都是没有根据也没有意义的。不过,如果 C 选项像 B 选项一样指明函数 f(x) 和函数 g(x) 的极限是存在的,那么该选项的表述就是正确的,原因在 B 选项中已经分析过。

综上可知,选项 C 是错误的。

D 选项

该选项首先给出了如下条件:

\lim_{x \rightarrow x_{0}}f(x)>\lim_{x \rightarrow x_{0}}g(x)

若我们令 F(x)=f(x)-g(x), 则上面的条件可以改写成:

\lim_{x \rightarrow x_{0}}F(x)>0

接着选项给出了:

\exists \varepsilon>0, 当 0<|x-x_{0}|<\varepsilon

这说明我们是要在“函数极限的管辖范围内”讨论这个选项的说法,具备使用保号性的前提,条件可用,可以继续接下来的思考步骤。

接着,该选项给出了它的结论:

f(x)>g(x)

根据前面的分析可知,我们可以将此改写成:

F(x)>0

我们知道,当一个函数的极限存在且大于 0 的时候,在函数极限的管辖范围内,可以推导出该函数也大于 0.

综上可知,选项 D 是正确的。

EOF

无人机被击落后,美国向伊朗发动网络战

根据网络来源的消息,美国政府官员 06 月 22 日表示,美国网络战部队发动了针对伊朗军用计算机的网络攻击,这些计算机被用来控制伊朗的火箭和导弹发射。美国总统 Donald Trump 说,他已经授权了网络安全部队,命令他们对伊朗展开报复性的网络攻击以回应伊朗击落美国的无人侦察机。

伊朗外交部长 Javad Zarif 于 2019 年 06 月 20 日在 Twitter 发文表示,伊朗击落了一架以隐身模式从阿联酋起飞并进入了伊朗领空的美国无人机,之后还找到了该机的残骸:

图 1. 截图来自 Twitter @JZarif

RQ-4 全球鹰无人机:

图 2. By U.S. Air Force photo by Bobbi Zapka – http://www.af.mil/shared/media/photodb/photos/070301-F-9126Z-229.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6711631

Facebook 与其合作者发布全球化加密货币 Libra

根据网络消息,美国当地时间 2019 年 06 月 18 日,由 Facebook 公司参与创建的全球加密货币 Libra 公开发布。与此同时,Facebook 还宣布成立 Libra 协会,该协会是一个独立的组织,其主要职责就是管理货币和标准。该协会将和监管机构一起,维护 Libra 的健康发展。Libra 协会的总部设在瑞士日内瓦。

在上个月刚刚召开的 F8 开发者大会上,Facebook 创始人兼 CEO, Mark Zuckerberg 曾说他希望让转账像发送一张照片一样简单:数字化,迅捷,免费和安全。而在去年(2018 年)的时候,Facebook 曾释放过要加入加密货币浪潮中的意愿。

加密货币 Libra 的目的是“让数十亿人用上货币。到目前为止,全球还有 17 亿成年人没有自己的银行账户,Libra 将使人们以更低的成本,更便捷地开展在线交易,这也可能吸引更多的用户使用社交网络。

Libra 并不是专属于 Facebook 的加密货币,Facebook 只是 Libra 协会的成员之一,这个协会目前还包括 MasterCard, Visa, PayPal, Uber, eBay, Vodafone 和 Mercy Corps 等在内的共计 28 个创始成员。在 2020 年 Libra 正式运行的时候,Facebook 希望 Libra 协会最终能拥有 100 个成员。

关于 Libra 的使用方法,也已经有了明确的规划。未来,在 Facebook 和 Instagram 这两个应用程序上将会有一个按钮,使人们可以像发送一个 GIFs 或者表情一样使用 Libra. 此外,用户也可以在一款独立的应用程序中使用 Libra.

那么,Libra 和现在正在全球范围内使用的,例如比特币这样的加密货币有什么区别呢?Libra 也是基于区块链的数字货币,这一点和其他货币并没有区别。但是和其他加密货币不同的是,Libra 将采用现实世界中的资产(例如中央银行发行的现金或者国债)来赋予其价值。此外,在初期,Libra 的区块链网络将由创始成员维护,但是在未来,Libra 的网络将演变为一个完全开放的系统。

更多关于 Libra 的信息可以参阅《Libra 中文版白皮书》

本文部分内容参考了下列文章:

2009 年研究生入学考试数学一选择题第 1 题解析

题目

x \rightarrow 0 时,f(x)=x-\sin axg(x)=x^{2}\ln(1-bx) 是等价无穷小,则()

( A ) a=1,b=-\frac{1}{6}.

( B ) a=1,b=\frac{1}{6}.

( C ) a=-1,b=-\frac{1}{6}.

( D ) a=-1,b=\frac{1}{6}.

解析

由于 f(x)g(x) 是等价无穷小,因此,根据“无穷小的比较”中关于等价无穷小的定理:

\lim \alpha(x)=0, \lim \beta(x)=0,

\lim \frac{\alpha (x)}{\beta (x)}=1, 则 \alpha(x)\beta(x) 是等价无穷小,记为 \alpha(x)\sim\beta(x).

因此,我们有:

\lim_{x \rightarrow 0}\frac{f(x)}{g(x)}=\lim_{x\rightarrow 0}\frac{x-\sin ax}{x^{2}\ln(1-bx)}=1.

在“常用的等价无穷小”中,同时和 \sin xx 有关的等价无穷小两个,如下:

\sin x \sim x; x-\sin x \sim \frac{1}{6}x^{3}.

同时和 \ln xx 有关的等价无穷小也有两个,如下:

\ln(1+x)\sim x; x-\ln(1+x)\sim \frac{1}{2}x^{2}.

那么,我们现在需要考虑的问题就是:需要组合使用哪两个等价无穷小化简原式?

这里选择并确定使用哪两个等价无穷小的依据就是题目中给出的“等价无穷小”。也就是说,在对原式进行化简运算的过程中,必须保证分子分母互为等价无穷小,每一步都要遵守这个原则,最后化简出来的结果中分子分母也必须互为等价无穷小,只有这样才可以和原式划等号。

由前面的计算我们知道,原式的分子是:

x-\sin ax

原式的分母是:

x^{2}\ln(1-bx)

于是,分子的有效化简形式有以下四种:

x-\sin ax=x-ax (1)

OR

x-\sin ax=\sin x-\sin ax (2)

OR

x-\sin ax=x-[ax-\frac{1}{6}(ax)^{3}]=x-ax+\frac{1}{6}a^{3}x^{3} (3)

OR

x-\sin ax=\frac{1}{6}x^{3}+\sin x-\sin ax (4)

分母的有效化简形式有以下两种:

x^{2}\ln(1-bx)=x^{2}(-bx)=-bx^{3} (5)

OR

x^{2}\ln(1-bx)=x^{2}[(-bx)-\frac{1}{2}(-bx)^{2}]=-bx^{3}-\frac{1}{2}b^{2}x^{4} (6)

由于要保证每一步计算过程中分子分母都是等价无穷小,因此,我们首先要看看那些式子组合起来可以形成等价无穷小。

(1) 到 (6) 六个式子中变量 x 的次方数情况如下:

(1): 只包含 1 次方;

(2): 只包含 1 次方;

(3): 包含 1 次方和 3 次方;

(4): 包含1 次方和 3 次方;

(5): 只包含 3 次方;

(6): 包含 3 次方和 4 次方。

由于分母对应的 (5) 和 (6) 两个式子都包含 3 次方,分子对应的 (1) 式和 (2) 式无论如何变化也不会出现 3 次方,无法与分母构成等价无穷小,因此排除。此外,(4) 式有 \sin x\sin ax, 而分母中并没有对应的形式,因此 (4) 式被基本排除。

现在就剩下分子对应的 (3) 式和分母对应的 (5) 式和 (6) 式了。由于 (6) 式中含有 x 的 4 次方,而 (3) 式无论如何变化也不会出现 4 次方,因此,正确的化简过程应该在 (3) 式和 (5) 式中产生。

基于以上分析,尝试化简如下:

原式=\lim_{x\rightarrow 0}\frac{x-ax+\frac{1}{6}a^{3}x^{3}}{-bx^{3}}=\lim_{x\rightarrow0}\frac{(1-a)x+\frac{1}{6}a^{3}x^{3}}{-bx^{3}}

分母中没有 1 次方,因此,为了保证“分子分母互为等价无穷小”这个条件始终成立,唯一的办法就是令 1-a=0, 接下来,根据 f(x)\sim g(x) 所得的分子分母的对应关系,我们可以得到:

\frac{1}{6}a^{3}=-b

两式联立:

\left\{\begin{matrix}1-a=0,\\ \frac{1}{6}a^{3}=-b.\end{matrix}\right.

解得:

\left\{\begin{matrix} a=1,\\ b=-\frac{1}{6}.\end{matrix}\right.

综上可知,本题的正确选项是:A


通过本题,我们可以总结出使用等价无穷小化简原式过程中的以下规律:

  • 注意原式分子分母的无穷小类型(等价,高阶,低阶,同阶,K 阶),计算过程中要以始终保持一致的无穷小类型为所有计算的前提;
  • 使用常见等价无穷小化简的时候一般都是由繁化简,即化简的趋势都是使式子中尽可能只出现 x, 例如将 \sin x 化为 x, 将 \ln(1+x) 化为 x 等。
  • 此外,把式子中的一部分化为和另一部分相同类型的形式更有可能简化运算,例如在本题中,分母是 x^{2}\ln(1-bx), 则把 \ln(1-bx) 化为 -bx 显然会让式子在形式上更统一,更有利于后面的计算;
  • 化简过程要严格按照公式进行,特别要注意负号和变量前面的参数,必要时要先加上括号维持原来的形式,之后一步步计算。

QQ 邮箱漂流瓶功能将于 2019 年 06 月 24 日起停止服务

QQ 邮箱团队于 2019 年 04 月 23 日在 QQ 邮箱的漂流瓶页面以弹窗形式发布公告表示“因业务调整,‘QQ邮箱漂流瓶’功能将于2019年6月24日起终止服务”。

公告截图如下:

QQ 邮箱漂流瓶功能将于 2019 年 06 月 24 日起停止服务
图 1. 截图来自 mail.qq.com

据悉,QQ 邮箱漂流瓶功能于 2010 年 09 月 28 日正式上线。由于有部分用户使用漂流瓶功能(微信和 QQ 邮箱此前均有漂流瓶功能)发布违禁内容,微信和 QQ 邮箱于 2018 年 11 月 30 日暂时下线了漂流瓶功能。此次 QQ 邮箱漂流瓶功能停止服务可能也是因为利用漂流瓶传播的内容不太容易管理。

百度旅游发布公告称将于 2019 年 06 月 30 日全面停止服务

百度旅游近日在其官网 (lvyou.baidu.com) 发布公告称,由于业务调整,百度旅游将在 2019 年 06 月 30 日全面停止服务,用户可以在 2019 年 12 月 31 日之前导出自己的数据到同一个账号下的百度网盘中。

图 1. 截取自 lvyou.baidu.com

公告全文如下:

世界很大,愿您遇见更美好的风景
致所有百度旅游的用户们:
感谢大家长久以来的支持,很遗憾的通知您,由于业务调整,百度旅游将在2019年6月30日全面停止服务,即日起,请不要再尝试上传各种内容,以防造成无法挽回的数据丢失。
停运具体事项安排如下:
百度旅游将在2019年6月30日全面停止服务,届时除了此公告页以外,您将无法访问其他页面,也将无法使用其他任何功能。
即日起至2019年12月31日期间,您可点击下方授权按钮,申请导出您的游记及画册数据,此数据将于24小时内迁移至PC版百度网盘-更多-文章目录下,您可使用相同百度账号在网盘访问您的资料。
若在过程中遇到任何问题或需要以邮件形式导出,可发送邮件至ilvyou-help@baidu.com,我们将在10个工作日内给您答复。
对因此次调整给您带来的不便,我们深表歉意。愿您在将来的日子里,遇见更好的风景。
请务必在2019年12月31日之前对需要保存的游记和相册进行导出以防丢失。

lvyou.baidu.com 公告