2015 年研究生入学考试数学一填空题第 2 题解析

题目

\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\frac{\sin x}{1+\cos x}+|x|)dx=__.

解析

本题存在(关于原点对称的)对称区间 “[-\frac{\pi}{2},\frac{\pi}{2}]“, 在求积分的时候,如果看到这样的对称区间,则要考虑被积函数是不是奇函数或者偶函数。如果是奇函数,则其在对称区间上的积分为 0, 如果是偶函数,则我们可以只计算其大于 0 或者小于 0 方向上的积分,之后再乘以 2 即可获得整个积分区间上的积分数值。

由于:

\frac{\sin (-x)}{1+\cos(-x)}=\frac{-\sin x}{1+\cos x} \Rightarrow f(-x)=-f(x).

因此,f(x)=\frac{\sin x}{1+\cos x} 是一个奇函数,因此,其在对称区间 [-\frac{\pi}{2},\frac{\pi}{2}] 上的积分为 0.

又由于:

|-x|=|x| \Rightarrow g(-x)=g(x).

因此,g(x)=|x| 是一个偶函数。

于是:

原式 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|x|dx = 2\int_{0}^{\frac{\pi}{2}}xdx=2 \cdot \frac{1}{2}x^{2}|_{0}^{\frac{\pi}{2}}=\frac{\pi^{2}}{4}.

当然,本题除了可以使用积分的原理计算之外,还可以画图计算面积,如图 1:

Figure 1. y=|x| 的函数图像

根据上图,我们有:

\frac{\pi}{2} \cdot \frac{\pi}{2} \cdot \frac{1}{2} \cdot 2=\frac{\pi^{2}}{4}.

综上可知,本题的正确答案是:\frac{\pi^{2}}{4}.

EOF

2018 年研究生入学考试数学一填空题第 1 题解析

题目

\lim_{x \rightarrow 0}(\frac{1-\tan x}{1+\tan x})^{\frac{1}{\sin kx}}=e, 则 k=__.

解析

观察本题可以发现,这是一个求极限的式子,而且等式的右边是 e, 符合“两个重要极限”中的第二个重要极限的一部分特征。

两个重要极限如下:

\lim_{x \rightarrow x_{x_{0}}}\frac{\sin x}{x}=1,\lim_{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\lim_{x \rightarrow \infty}(1+\frac{1}{x})^{x}=e.

由于题目中的式子不存在上述公式中的 1, 因此,我们需要构造出这个 1, 即:

1+\square=\frac{1-\tan x}{1+\tan x }\Rightarrow \square = \frac{1-\tan x}{1+\tan x }-1=\frac{1-\tan x}{1+\tan x }-\frac{1+\tan x}{1+\tan x}=\frac{-2 \tan x}{1+\tan x}.

于是,原式= \lim_{x \rightarrow 0}(1+\frac{-2\tan x}{1+\tan x})^{\frac{1}{\sin kx}}=e. (1)

由于当 x \rightarrow 0 时,\frac{-2\tan x}{1+\tan x} \rightarrow 0\frac{1}{\sin kx} \rightarrow \infty, 所以,符合使用“两个重要极限”的条件,可以继续接下来的计算。

Figure 1. 正切函数图像,使用 www.desmos.com 制作

接下来继续向公式的方向构造等式。

(1) = \lim_{x \rightarrow 0}(1+\frac{-2\tan x}{1+\tan x})^{\frac{1+\tan x}{-2\tan x}\frac{-2\tan x}{1+\tan x}\frac{1}{\sin kx}} (2)

根据公式,我们知道:

\lim_{x \rightarrow 0}(1+\frac{-2\tan x}{1+\tan x})^{\frac{1+\tan x}{-2\tan x}}=e.

于是:

(2)=e^{\lim_{x \rightarrow 0}\frac{-2\tan x}{1+\tan x}\frac{1}{\sin kx}}=e^{\lim_{x \rightarrow 0}\frac{-2\tan x}{(1+\tan x)\sin kx}} (3)

x \rightarrow 0 时,\tan x \rightarrow 0 是不可以带入原式中的(只有非零和非无穷的数值可以带入原式中。),不过当 x \rightarrow 0 时,(1+\tan x) \rightarrow 1 是可以带入原式中的,于是:

\lim_{x \rightarrow 0}\frac{-2\tan x}{(1+\tan x)\sin kx}=\lim_{x \rightarrow 0}\frac{-2\tan x}{\sin kx}.

又因为当 x \rightarrow 0 时,\sin x \sim \tan x \sim x, 于是:

\lim_{x \rightarrow 0}\frac{-2\tan x}{\sin kx}=\lim_{x \rightarrow 0}\frac{-2x}{kx}=-\frac{2}{k}.

即:

e^{-\frac{2}{k}}=e \Rightarrow -\frac{2}{k}=1 \Rightarrow k=-2.

综上可知,正确答案是:-2

EOF

2015 年研究生入学考试数学一解答题第 1 题解析

题目

设函数 f(x)=x+a \ln(1+x)+bx\sin x,g(x)=kx^{3}x \rightarrow 0 时等价无穷小,求常数 a,b,k 的取值.

解析

由于 x \rightarrow 0 时,f(x)g(x) 是等价无穷小,因此有:

\lim_{x \rightarrow 0}\frac{f(x)}{g(x)}=1, 即:

\lim_{x \rightarrow 0}\frac{x+a \ln(1+x)+bx \sin x}{kx^{3}}=1.

又由麦克劳林公式:

1. \sin x=x+o(x^{2});

注 1:根据麦克劳林公式,\sin x 也可以等于 x-\frac{x^{3}}{6}+o(x^{4}), 但是这里为了能够在接下来的计算中使得分子分母可以使用“对照”的方式求解,分子的最大幂次不能大于分母的最大幂次。由于 \sin x 在使用麦克劳林公式替换之后还需要和 x 相乘得到二次幂,因此这里只能令 \sin x 等于 x+o(x^{2}).

2. \ln(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+o(x^{3}).

注 2. 对 \ln(1+x) 项数的选取所依据的原因和注 1 一致。

于是,我们有:

1=\lim_{x \rightarrow 0}\frac{x+ax-\frac{a}{2}x^{2}+\frac{a}{3}x^{3}+o(x^{3})+bx^{2}+o(x^{3})}{kx^{3}}=\lim_{x \rightarrow 0}\frac{(1+a)x+(b-\frac{a}{2})x^{2}+\frac{a}{3}x^{3}+o(x^{3})}{kx^{3}}.

于是,我们有:

\left\{\begin{matrix} 1+a=0\\ b-\frac{a}{2}=0,\\ \frac{a}{3}=k \end{matrix}\right.

解得:

\left\{\begin{matrix} a=-1\\ b=-\frac{1}{2}\\ k=-\frac{1}{3} \end{matrix}\right.

手写作答

图 1

EOF

2017 年研究生入学考试数学一填空题第 2 题解析

题目

微分方程 y''+2y'+3y=0 得通解为__.

解析

观察可知,这是一个二阶常系数线性齐次微分方程。

二阶常系数线性齐次微分方程的性质如下:

形如 y''+py'+qy=0, 其中 p,q 均为常数。

特征方程为:\lambda^{2}+p \lambda+q=0,

(1) 当 \lambda_{1},\lambda_{2} 为互异实根时,微分方程得通解为 y(x)=C_{1}e^{\lambda_{1}x}+C_{2}e^{\lambda_{2}x};

(2) 当 \lambda_{1}=\lambda_{2} 时,通解为 y(x)=(C_{1}+C_{2}x)e^{\lambda_{1}x};

(3) 当 \lambda=\alpha \pm i \beta (复数根)时,通解为 y(x)=e^{\alpha x}(C_{1}\cos \beta x+C_{2}\sin \beta x).

在本题中,特征方程中的 p=2,q=3, 因此特征方程为:

\lambda^{2}+2\lambda+3=0. (1)

此外,我们还知道,对于形如 ax^{2}+bx+c=0 的一元二次方程,其求根公式为:

x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}.

于是,我们知道,对于 (1) 式:

\lambda=\frac{-2\pm\sqrt{4-12}}{2}=\frac{-2\pm\sqrt{-8}}{2}. (2)
我们又知道,在虚数中(复数包含虚数和实数),虚数单位 i 有如下性质:

i^{2}=-1.

于是,(2) 式可以写成:

\lambda=\frac{-2\pm\sqrt{8i^{2}}}{2}=\frac{-2\pm i 2 \sqrt{2}}{2}=-1\pm i\sqrt{2}.

于是,\alpha=-1,\beta=\sqrt{2}.

因此,正确答案是:

y=e^{-x}(C_{1}\cos \sqrt{2}x+C_{2}\sin\sqrt{2}x)

EOF

2009 年研究生入学考试数学一选择题第 4 题解析 (两种解法)

题目

设有两个数列 \{a_{n}\}, \{b_{n}\}, 若 \lim_{n \rightarrow \infty}a_{n}=0, 则()

( A ) 当 \sum_{n=1}^{\infty}b_{n} 收敛时,\sum_{n=1}^{\infty}a_{n}b_{n} 收敛.

( B ) 当 \sum_{n=1}^{\infty}b_{n} 发散时,\sum_{n=1}^{\infty}a_{n}b_{n} 发散.

( C ) 当 \sum_{n=1}^{\infty}|b_{n}| 收敛时,\sum_{n=1}^{\infty}a_{n}^{2}b_{n}^{2} 收敛.

( D ) 当 \sum_{n=1}^{\infty}|b_{n}| 发散时,\sum_{n=1}^{\infty}a_{n}^{2}b_{n}^{2} 发散.

解析

由题目信息可知,当 n \rightarrow \infty 时,数列 \{a_{n}\} 是收敛的。

方法一:反例法

A 项:

a_{n}=b_{n}=(-1)^{n-1}\frac{1}{\sqrt{n}}.

则此时 \{a_{n}\} 是一个收敛数列,\sum_{n=1}^{\infty}b_{n} 也收敛(根据交错级数的莱布尼茨准则判别法可得此结论),但 \sum_{n=1}^{\infty}a_{n}b_{n}=\sum_{n=1}^{\infty}\frac{1}{n} 发散(由常见级数的敛散性可得此结论)。

由此构成了对 A 项的反例,A 项错误。

注 1. 交错级数 \sum_{n=1}^{\infty}(-1)^{n-1}u_{n}(u_{n}>0) 的判别法(莱布尼茨准则):

若交错级数 \sum_{n=1}^{\infty}(-1)^{n-1}u_{n}(u_{n}>0) 满足如下条件:

u_{n} \geqslant u_{n+1},(n = 1,2,3, \dotsc);

\lim u_{n} = 0,

则交错级数收敛,其和 S \leqslant u_{1}, 余项 |R_{n}| \leqslant u_{n+1}.

注 2. 常见级数的敛散性:

p 级数 \sum_{n=1}^{\infty}\frac{1}{n^{p}}\left\{\begin{matrix} 收敛 & p>1,\\ 发散 & p \leqslant 1. \end{matrix}\right.

B 项:

a_{n}=b_{n}=\frac{1}{n}, 则

\sum_{n=1}^{\infty}a_{n}b_{n}=\sum_{n=1}^{\infty}\frac{1}{n^{2}}.

此时,数列 \{a_{n}\} 是一个收敛数列,\sum_{n=1}^{\infty}b_{n} 是发散的,但是 \sum_{n=1}^{\infty}\frac{1}{n^{2}} 是收敛的。

由此构成了对 B 项的反例,B 项错误。

D 项:

和 B 项一样,令 a_{n}=b_{n}=\frac{1}{n}, 则 \sum_{n=1}^{\infty}a_{n}^{2}b_{n}^{2}=\sum_{n=1}^{\infty}\frac{1}{n^{4}} 是收敛的。

由此构成了对 D 项的反例,D 项错误。

综上可知,排除了 A,B,D 三个选项后,正确选项一定是 C 项。

方法二:用级数收敛的必要条件推导证明

我们可以使用级数收敛的必要条件直接证明 C 项正确。

级数 \sum_{n=1}^{\infty}u_{n} 收敛的必要条件:\lim_{n \rightarrow \infty} u_{n}=0.

由于 \lim_{n \rightarrow \infty} u_{n}=0 是级数 \sum_{n=1}^{\infty}u_{n} 收敛的必要条件,因此,根据“小充分大必要”的原则,我们知道:

\sum_{n=1}^{\infty}u_{n} 收敛 \Rightarrow \lim_{n \rightarrow \infty} u_{n}=0;

\lim_{n \rightarrow \infty} u_{n}=0 \nRightarrow \sum_{n=1}^{\infty}u_{n} 收敛。

由于 \lim_{n \rightarrow \infty} a_{n}=0, 从而存在 M>0, 有 |a_{n}| \leqslant M, 即:

a_{n}^{2}b_{n}^{2} \leqslant M^{2}b_{n}^{2}.
又因为 \sum_{n=1}^{\infty}|b_{n}| 收敛,故有:

\lim_{n \rightarrow \infty}|b_{n}|=0.

又根据如下定理:

c 为非零常数,则 \sum_{n=1}^{\infty}u_{n}\sum_{n=1}^{\infty}cu_{n} 具有相同的敛散性。

因此,\sum_{n=1}^{\infty}M^{2}|b_{n}| 收敛,即:

\lim_{n=1}^{\infty}M^{2}|b_{n}|=0.

于是:

\lim_{n \rightarrow \infty}\frac{M^{2}|b_{n}||b_{n}|}{|b_{n}|}=\lim_{n \rightarrow \infty}M^{2}|b_{n}|=\lim_{n \rightarrow \infty}\frac{M^{2}b_{n}^{2}}{|b_{n}|}=0.

接下来,根据“比较判别法的极限形式”:

\sum_{n=1}^{\infty}u_{n}\sum_{n=1}^{\infty}v_{n} 均为正项级数,且 \lim_{n \rightarrow \infty}\frac{u_{n}}{v_{n}}=A(v_{n} \neq 0).

① 若 0 \leqslant A \leqslant +\infty, 且 \sum_{n=1}^{\infty}v_{n} 收敛,则 \sum_{n=1}^{\infty}u_{n} 收敛.

② 若 0 \leqslant A \leqslant +\infty, 且 \sum_{n=1}^{\infty}v_{n} 发散,则 \sum_{n=1}^{\infty}u_{n} 发散.

于是我们知道,\sum_{n=1}^{\infty}{M^{2}b_{n}^{2}} 收敛。

又因为 a^{2}b^{2} \leqslant M^{2}b^{2}, 所以:

\sum_{n=1}^{\infty}{a^{2}b_{n}^{2}} 收敛.

由此得证 C 项正确。

EOF